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We show that inflation with a quadratic potential occurs naturally in theories where an axionlike field

mixes with a 4-form. Such an axion is massive, with the mass which arises from the mixing being

protected by the axion shift symmetry. The 4-form backgrounds break this symmetry spontaneously and

comprise a minilandscape, where their fluxes can change by emission of membranes. Inflation can begin

when the 4-form dominates the energy density. Eventually, this energy is reduced by membrane emission,

and the axion can roll slowly towards its minimum, as in the simplest version of chaotic inflation.
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Among the many scenarios of inflation, the one which
stands out in terms of its simplicity, elegance, and pheno-
menological success is chaotic inflation [1]. It has since be-
come a prototype of slow-roll inflation, arising as an ef-
fective description in many complicated models of infla-
tion. It also fits the observational data really well [2]. For
the scenario to work, however, one needs the inflaton to ini-
tially have super-Planckian expectation values, � � MPl,
in order for the slow-roll conditions to be met for long
enough, and yield at least�65 e-folds of inflation. This is-
sue has led to considerable debate, starting with [3], about
how realistic it is to model the inflaton potential by a quad-
ratic term when� � MPl. In this regime, higher-order cor-
rections to the effective potential might become important
and steepen the potential, spoiling slow-roll conditions, or
even altogether obstructing inflation. This does not always
happen. E.g., the higher-dimension operators in the loop
expansion of the effective potential may seem individually
dangerous, going as ð�=MÞn for some UV scaleM & MPl.
However, they come in as an alternating series, and when
inflaton has power-law self-interactions, they sum up to
logarithmic corrections, as in the Coleman-Weinberg the-
ory [4]. Further, the worries of [3] that graviton loops can
yield large corrections to the potential do not materialize
[5] because graviton one-loop corrections yield terms like
@2�VR and V2=M4

Pl, which are small where chaotic inflation

is presumed to operate, @2�V <M2
Pl and V <M4

Pl. In fact, a

simple argument can be fielded explaining how the poten-
tial may remain flat despite radiative corrections. If the
potential were exactly flat, the theory would have had a
shift symmetry� ! �þ�0. Radiative corrections would
not break it, and the full effective potential would only
involve @��. Conversely, if the potential depends weakly

on �, this shift symmetry is softly broken, and so the
radiative corrections are proportional only to the symmetry
breaking terms. If the symmetry breaking terms are small,
the radiative corrections will stay under control, keeping
the effective potential sufficiently flat.

Hence, the task is to find theories where dynamics which
gives mass to the inflaton is radiatively stable. If so, the
inflaton mass and other polynomial interactions will be
small enough that further corrections may not spoil their
flatness, as per the argument above. This makes various
pseudo Nambu-Goldstone bosons [6] obvious inflaton can-
didates (we will call them ‘‘axions’’ henceforth) because
their masses arise from nonperturbative effects, whereas
the perturbative shift symmetry prevents large radiative
corrections [7]. The effective potential arises from instan-
ton effects, and can be written in the form of a ‘‘Fourier
series,’’

P
n�

4
n cosð2n�=f�Þ, where f� is the axion decay

constant and �n are dynamically generated scales in the
instanton expansion, typically related to the UV cutoff via

�1 �Me��=g, where g is the gauge coupling and � a
dimensionless number, and with �n>1 < �1 (see, e.g.,
[9,10]). For gravitational instantons, these formulae

change to �n �Me�nMPl=f� . The axion varies over the
interval (0, �f�). To have slow-roll inflation, one needs

to have the regime where � � MPl; otherwise, the field
potential will not dominate the evolution for long enough.
These requirements beg for f� � MPl. On the other hand,

it appears to be difficult to obtain large axion decay con-
stants obeying f� * MPl in UV complete theories [9]. So if

f� & MPl, the higher-order instanton effects come into

play, interfering with inflation with large � � MPl. To
date, the proposals which were devised to address this
issue employ either the many fields [10] or nontrivial
compactifications in string theory [11,12].
In this Letter, we outline a different framework circum-

venting this problem. It is a higher energy variant of the
dynamics of quintessence which we have discussed re-
cently [13]. If an axion field mixes with a 4-form in 4D
by a bilinear term, it becomes massive, with the mass term
which preserves the axion shift symmetry of the action.
The shift symmetry only breaks spontaneously after pick-
ing the background 4-form solution [14]. Thus, the mass is
protected from field theory radiative corrections, and the
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potential can only be slanted by instanton effects. Such
effects are inevitable, since in order for the axion to be an
inflaton, it must have matter couplings so that it can reheat
the universe after the end of inflation. However, if the axion
does not couple to any sector which is strongly coupled at
or above the scale of inflation, the instanton potential terms
will be negligible compared to the leading term induced by
the 4-form mixing. Inflation can then unravel precisely as
described originally in the simple chaotic inflation scenario
of Linde [1], and reheating can proceed by the production
of the gauge bosons to which the axion couples directly.

As in [13], we consider an axion mixing with a 4-form,
via a term �������F����. The action including minimal

coupling to gravity has two parts, describing bulk theory
and terms describing membrane nucleation dynamics.
Without axion-form mixing, such theories have been
studied in the context of cosmological constant relaxation
[15–19]. When the mixing is turned on, the bulk term is

S bulk ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R� 1

2
ðr�Þ2 � 1

48
F2
����

þ �

24
�
�����ffiffiffi

g
p F���� þ . . .

�
: (1)

The ellipsis denote the matter sector contributions, �����

is the Levi-Civita tensor density, as indicated by the metric
determinant terms, and F���� is the antisymmetric deriva-

tive of the 3-form potential, F���� ¼ 4@½�A����. The pa-

rameter � has dimension of mass, as required to correctly
normalize the bilinear ������F����. For now, we view it

merely as a given parameter, noting that it can arise from
either spontaneous breaking of Z2n discrete symmetries
[14], or from dimensional reductions of higher rank form
fields [13,20], as the flux through compact dimensions. The
membrane action over its woldvolume 	a with induced
metric 
ab is

S brane 3 e

6

Z
d3	

ffiffiffiffi



p
eabc@ax

�@bx
�@cx

�A���; (2)

where the membrane charge e is normalized to the
membrane tension. To correctly covariantize it, we
must also include the Gibbons-Hawking term for
gravity, and its analogue for the 4-form [13,19],
which are

R
d4x

ffiffiffi
g

p r�ðF����A���Þ=6 and

�R
d4x

ffiffiffi
g

p r�ð�������ffiffi
g

p A���Þ=6. The membrane is

charged under the 4-form, that can jump between interior
and exterior of the membrane, changing according to
�F���� ¼ e

ffiffiffi
g

p
�����. In addition to the global dynamics

controlled by membrane emission, in the presence of non-
zero mixing � � 0, the 4-form is not locally constant
[13,14]. It depends on the scalar field �, which mixes
with it and becomes massive: the 4-form background gives
inertia to the scalar’s propagation, which by local Lorentz
invariance translates into the scalar mass term. After the
background is selected, the 4-form locks to�, breaking the
shift symmetry spontaneously [14].

A representation which manifestly displays the above
features follows if we integrate out the 4-form, bearing in
mind that the membrane emission can change its back-
ground value [13]. So, using the first order formalism by
extending the action with the Lagrange multiplier term
Sq ¼

R
d4xðq=24Þ����� (F���� � 4@�A���) [13,21],

completing the squares in F����, properly accounting for

the boundary terms, and integrating F-dependent terms
out, we get

Seff ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R� 1

2
ðr�Þ2 � 1

2
ðqþ��Þ2

þ 1

6

�����ffiffiffi
g

p A���@�q

�
: (3)

The boundary term (2) depending on the membrane charge
also remains, now giving the global dynamics of the
Lagrange multiplier field q. Locally, it is an auxiliary field,
since (3) yields @q ¼ 0. The membrane term (2) changes
this, yielding a source for @q, which jumps across the
membrane by �qj ~n ¼ e.
Equation (3) shows that the mixing has induced an

effective potential V ¼ 1
2 ðqþ��Þ2, instead of the pure

cosmological constant contribution 1
2q

2, where the scalar

field has mass� and, for a fixed q, the minimum at�min ¼
�q=�. The shift symmetry � ! �þ�0 survives in the
action because the variation of � is compensated by the
shift q ! q���0. Once q is fixed as a solution of the
field equations, the shift symmetry is broken
spontaneously.
When considering the mass of�, one has to worry about

possible competing contributions from other corners of the
theory. The presence of the shift symmetry in the action (3)
protects the massive field � from radiative corrections to
its mass. It implies that � couples to other matter only
derivatively, and so radiative corrections induced by such
couplings will not change the mass term. On the other
hand, if the axion couples to some gauge theory with the

standard Chern-Simons term � �
f�

TrðG ^GÞ, the instan-

ton effects will break the shift symmetry down to its
discrete subgoup � ! �þ n�f�. The resulting effective

potential will contribute to the axion mass, and in fact, in
the standard axionic inflation models, it is this potential
that one uses for driving inflation [6]. But as we noted
above, this requires f� >MPl. If on the other hand the

converse holds, as is argued to be more natural in UV
complete theories [9], this contribution to the potential
may become an obstruction if it is too large. However,
when f� <MPl as long as the scale of the potential � obeys

�4 <�2f2�, the instanton corrections will remain by and

large negligible, merely yielding small bumps on top of the
potential 1

2 ðqþ��Þ2 [14].
Another concern regarding the flatness of the 4-form

induced potential comes from considering corrections
from higher-dimension operators, omitted in (1). By gauge
symmetry of F and shift symmetry of �, they can be
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organized as an expansion in Fnþ2=M2n whereM is the UV
cutoff, e.g., the string scale. This means that the action (1)
is a good description of the system as long as jFj & M2.
Using the on-shell form for F, F���� ¼ ffiffiffi

g
p

�����ðqþ
��Þ [13], then yields the constraint � & M2=�, which
still allows a wide range of variation of � [22]. Hence, if
� � M, the description based on (1) remains under con-
trol, keeping the potential V ¼ 1

2 ðqþ��Þ2 flat even when
MPl � � & M2=�. Similar issues come up from consid-
ering gravitational effects. Perturbative corrections remain
small if one starts with a flat potential, since they only give
terms proportional to�m2

minR and�V2
eff=M

4
Pl, that are tiny

as long as V <M4
Pl [5]. The gravitational instanton correc-

tions are controlled by coefficients proportional to the
exponential of the instanton action [23]. When the axion
decay constant is small, f� & 0:1MPl, which as discussed

above, we can choose since we do not need it for slow roll,
the instanton action will be large enough to suppress non-
perturbative gravitational corrections as well.

Let us now turn to discussing the dynamics arising from
this potential. As is obvious, the 4-form charge q, which
determines the location of the minimum, can change by the
membrane emission, and so the space of axionic vacua is
really a mini-landscape, much like in [15–18]. However, as
we noted in [13], the mass � may also be a landscape
variable, as models given by (1) with � � 0 are naturally
realized by dimensional reduction of various supergravities
which arise as low energy limits of string theory. In this
case, the parameter � is in fact an internal flux of a
magnetic form field, and so it is quantized just like any
other generic 4-form flux, like q. If we start from 11D
SUGRA compactified on a 7-torus as [17], the expressions
for the fluxes are qi ¼ nie11=

ffiffiffiffiffi
Zi

p
, where Zi are the internal

volumes controlled by the (stabilized) volume moduli, and
e11 ¼ 2�M3

11 is the fundamental membrane charge, nor-

malized to the 11D Planck mass M11. The volume factors
for electric (i.e., 4D spacetime) 4-forms are Ze ¼ M2

Pl=2,
while for magnetic (i.e., internal space) 4-forms, they are
Zm;i ¼ M2

Pl=ð2M6
11V

2
3;iÞ [17]. Since � is the charge of a

magnetic 4-form, it is quantized according to � ¼
2�nV3M

3
11ðM11=MPlÞ2M11. Thus, � can change by emis-

sion of membranes in steps of ���
V3M

3
11ðM11=MPlÞ2M11, which can be quite small. If we

take a simple setup where the size of compact dimensions
is not much different from the string length, which may
still be sufficient to suppress the nonperturbative gravita-
tional contributions to the axion potential, V3M

3
11 �Oð10Þ,

the quantum of mass is ���Oð10Þ � ðM11=MPlÞ2M11.
This leads to a very interesting global picture of an

inflating universe. Inflation will be driven by the effective
cosmological term comprised of the ‘‘bare’’ negative cos-
mological constant [17] and the sum of 4-form fluxes
which do not involve axion mixings �ðniÞ, and the axionic
inflaton term 1

2 ðqþ��Þ2. The ‘‘cosmological constant’’

term will be eventually diminished by membrane emission,
yielding somewhere in the metaverse a net tiny cosmologi-

cal constant [17], or, if there are more axions, possibly a
quintessence field in slow roll [13], either one needed to
dominate the universe at the present time. The effective
potential driving inflation, Veff ¼ �ðniÞ þ ðqþ��Þ2=2,
would support scalar field fluctuations. If the scalar fluctu-
ations are small, they would feed into the density pertur-
bations given by [1]

��

�
’ H2

2� _�
’ ½�ðniÞ þ 1

2 ðqþ��Þ2�3=2
2�

ffiffiffi
3

p
M3

Pl�ðqþ��Þ ; (4)

a formula valid as long as its numerical value remains
below unity. On the other hand, from the inspection of
this equation, at early times when the potential is domi-
nated by the net cosmological term �ðniÞ, the density
perturbations ��=� can be very large. Where ��=� ex-
ceeds unity, the quantum fluctuations of the inflaton domi-
nate over the classical ones, and the dynamics of the field�
is going to be determined by random quantum fluctuations,
under whose influence the field hops around preparing the
regions of the Metauniverse in states where� is suspended
away from its minimum. This epoch will terminate in some
regions after membrane emission reduces �ðniÞ to below
1
2 ðqþ��Þ2. In those regions, q and � themselves will be

random variables. Once this happens, the formula (4)

degenerates to ��=� ’ ðqþ��Þ2=ð4� ffiffiffi
6

p
M3

Pl�Þ.
Clearly, given our bounds on the maximal value of� for

which we can still use the low energy action (1), and the
estimates above, this region of the universe may still be
trapped in the self-reproduction regime after the mem-
branes have carried away �ðniÞ. Or not—in any case,
eventually in some regions, quantum effects will take the
inflaton away from the self-reproduction regime. At that
point, the standard slow-roll inflation will begin, creating a
large inflated domain. As the inflaton background value
q=�þ� falls below MPl, inflation will terminate, and the
inflaton will begin to oscillate about the local minimum at
� ¼ �q=�, reheating this region of the universe in the
process. Reheating may occur by the production of, for
example, the gauge sector to which the inflaton may couple

by � �
f�

TrðG ^GÞ, and subsequent thermalization of this

gauge theory with the Standard Model particles. The re-

heating temperature would be TR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��MPl

q
, where �� �

�3=f2� is the decay rate of� into the gauge fields G. Thus,

TR � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3MPl

p
=f�, well above the temperature needed for

nucleosynthesis.
An important point which needs to be stressed here is

that when � is a random variable, so are the number of
e-folds which unravel during slow-roll phase and the value
of the amplitude of the nearly scale invariant spectrum of
density perturbations, changing from one slow-roll region
to another. Indeed, these quantities depend on q and �, as
is straightforward to calculate. Assuming that the slow roll
started with the value of � at the threshold of self-
reproduction, as suggested by the global picture outlined

above, they are [1] N� ’
ffiffiffiffiffiffiffi
6�

p
MPl=�, ��=� ’ 10�=MPl,
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where we have normalized the perturbations to their value
60 e-folds before the end of inflation. Clearly, these change
from one low energy universe to another (as does the
reheating temperature TR) but the a posteriori requirement
of producing a universe which has inflated at least 60
e-folds makes the dependence on q very weak. Never-
theless, this may still provide one with an arena to explore
anthropic reasoning further, by allowing for jumps in �
during the last stages of inflation, that could yield to
inflating domains whose boundaries might still be visible.
In such cases, one could search for the variation of both
residual curvature of cosmological spatial slices and the
amplitude of density perturbations, as probed in [24]. We
will not delve into this interesting and important arena
here. We will merely note that the requirement that the
density perturbations are of the right scale, ��=� ’ 10�5,
which implies � ’ 1013 GeV, can be directly related to
GUT scale physics if we take the inflaton to have no more
than few units of the quantum of mass, �Oð10Þ �
ðM11

MPl
Þ2M11, during the final stage of inflation in our region

of the metaverse. Indeed, it is easy to check that we need
M11 � 1015 GeV.

To conclude, we have shown that the simplest scenario
of chaotic inflation can be naturally realized in theories
where axionic fields mix with 4-forms. The resulting low
energy theory yields a model with a quadratic potential
generated by the mixing, and protected from higher-order
corrections in perturbation theory by a shift symmetry that
remains unbroken at the level of the action. The nonper-
turbative contributions to the potential both from field
theory and from gravity may be suppressed when f� <

MPl, if the gauge theory to which the inflaton couples is not
strong at too high a scale. The structure of the vacuum
configurations is a mini-landscape, and in some regions,
the conditions for successful chaotic inflation will occur
automatically. In them, the value of density perturbations
may be a random variable, as it depends on the inflaton
mass. This will occur in the theories where the effective 4D
picture which we adopt arises after dimensional reduction,
where the inflaton mass is also one of the form fluxes. In
that case, it can change from place to place, being de-
creased by membrane emission. This can be an interesting
scene for testing anthropic ideas and general features of the
landscape approach to cosmology.
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