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We propose a new class of atomic microwave clocks based on the hyperfine transitions in the ground

state of aluminum or gallium atoms trapped in optical lattices. For such elements magic wavelengths exist

at which both levels of the hyperfine doublet are shifted at the same rate by the lattice laser field, canceling

its effect on the clock transition. A similar mechanism for the magic wavelengths may work in microwave

hyperfine transitions in other atoms which have the fine-structure multiplets in the ground state.
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The present definition of the unit of time the second is
based on the frequency of the microwave transition be-
tween two hyperfine levels of the Cs atom. The Cs atomic
clocks date back more than a half of a century. The
accuracy of the standard has been substantially improved
over the years, culminating in a fountain clock apparatus
operated around the world [1,2]. Recently, it has been
realized that the accuracy and stability of atomic clocks
can be substantially improved by trapping atoms in a
standing wave of a laser light (optical lattices) operated
at a certain ‘‘magic’’ wavelength [3,4]. The laser wave-
length is tuned so that the differential light perturbations of
the two clock levels vanish exactly. In other words, while
remaining confined (this eliminates the Doppler and recoil
shifts), the atoms behave spectroscopically as if they were
in a vacuum. Millions of atoms can be trapped and inter-
rogated simultaneously, vastly improving the stability of
the clock. Such a setup was experimentally realized [5–7]
for optical frequency clock transitions in divalent atoms,
yielding accuracies competitive to the fountain clocks [7].
However, because these lattice clocks operate at an optical
frequency, to relate to the definition of the second, they
require state of the art frequency combs to bridge the
optical frequency to the microwave counters.

Here we extend the fruitful ideas of the optical lattice
clocks to microwave frequencies. We propose a new class
of atomic microwave clocks based on hyperfine transitions
in the ground state of Al or Ga atoms trapped in optical
lattices. We determine magic wavelengths and analyze
various systematic effects. Compared to a large chamber
of the fountain clock, the atoms are confined to a tiny
volume offering improved control over systematic errors.
A relative compactness of the clockwork could benefit
spacecraft applications such as navigation systems and
precision tests of fundamental theories.

The microwave clockwork involves two atomic levels of
the same hyperfine manifold. The transition frequency is
monitored and ultimately translated into a time measure-
ment. We envision the following experimental setup: the

atoms are trapped in a one-dimensional optical lattice
formed by counterpropagating laser beams of linear polar-
ization and frequency!L. The quantizing magnetic fieldB
is directed either along the direction of the laser propaga-

tion k̂ or along the polarization vector "̂. We label the clock
states as jnFMFi, where F is the total angular momentum,
F ¼ Jþ I, with MF being its projection on the quantiza-
tion axis and n encompassing the remaining quantum
numbers (inclusive of J and I, describing the electronic
and nuclear angular momentum). To minimize a sensitivity
to stray magnetic fields and residual circular polarization
of the laser light, we choose to work with the MF ¼ 0
components.
Under the influence of the laser each clock level is

perturbed. The relevant energy shifts are parametrized in
terms of the dynamic scalar,�S

að!LÞ, and tensor, �T
a ð!LÞ,

polarizabilities:

�EStark
nFMF

ð!LÞ ¼ �
�
1
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�
2
�
�S
nFð!LÞ þ �ð�Þ�T

nFð!LÞ

� 3M2
F � FðFþ 1Þ
Fð2F� 1Þ

�
; (1)

where �ð�Þ ¼ ð3cos2�� 1Þ=2, � being the angle between
B and "̂. In particular, � ¼ 1 for B k "̂ and � ¼ �1=2 for

B k k̂ geometries. E0 is the amplitude of the laser field.
While arriving at these expressions we required that the
Zeeman splittings in the B field are much larger than the
off-diagonal matrix of the optical Hamiltonian, a condition
which can be easily attained experimentally.
The clock frequency is modified by the difference:

��Starkð!LÞ ¼ 1

h
½�EStark

nF00M00
F
ð!LÞ � �EStark

nF0M0
F
ð!LÞ�:

We require that at a certain, magic, laser frequency, !�
L,

this laser-induced differential shift vanishes: ��ð!�
LÞ ¼ 0.

The magic cancellation mechanism depends on the fre-
quency dependence of underlying polarizabilities. We use
perturbation theory and expand the polarizabilities in terms
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of the powers of the hyperfine interaction �að!Þ ¼
�ð2Þ
a ð!Þ þ �ð3Þ

a ð!Þ þ . . . . The leading term, �ð2Þ
a ð!Þ, con-

tains the interaction with two photons, and �ð3Þ
a ð!Þ in

addition involves the hyperfine coupling of the electrons
with the nuclear spin. The relevant diagrams are shown in
Fig. 1. It is important to realize that the scalar component

of �ð2Þ
a ð!Þ does not depend on F. Also for J ¼ 1=2 levels,

the tensor component of �ð2Þ
a ð!Þ vanishes due to selection

rules, as the underlying rotational symmetry is that of the
rank 2 tensor. We conclude that for a J ¼ 1=2 level in a
laser light of linear polarization, the dominant Stark shift
vanishes. Consequently, below we restrict consideration to
the J ¼ 1=2 levels.

Since in the leading order both clock levels are shifted
identically, we proceed to computing the third-order dia-
grams of Fig. 1. Each diagram involves two couplings to
the lattice laser field and one hyperfine interaction. The
labeling of the diagrams (top, center, and bottom) reflects
the position of the hyperfine interaction with respect to the
two laser interactions. The formalism and the computa-
tional scheme are similar to those of Refs. [8,9]. We carry
out the conventional angular reduction and extract the
scalar and tensor contributions to each diagram. Detailed
expressions are given in Ref. [10]. We find that the third-
order shift may be parametrized as

��Starkð!LÞ ¼
�
1

2
E0

�
2fAðF0; F00Þ½�ð3Þ

nF0 ð!LÞ�Scalar

þ BðF0; F00Þ½�ð3Þ
nF0 ð!LÞ�Tensorg; (2)

where coefficients AðF0; F00Þ and BðF0; F00Þ depend on the
F numbers of the clock states and on the orientation ( k or
? ) of the quantizing B field with respect to the polariza-
tion vector of the laser light. The relation (2) arises due to
the fact that the respective scalar and tensor parts of the
dynamic polarizability vary proportionally for the two
clock states. Clearly the scalar and tensor contributions
to the differential shift must cancel each other at the magic
wavelength.

We start with discussing the results for the metrologi-
cally important 133Cs atom. A lattice Cs microwave clock
was discussed in Ref. [11]. Here the clock transition is

between the F ¼ 4 and F ¼ 3 hyperfine components of the
electronic ground state 6s1=2. Since J ¼ 1=2, for linear

polarization the second-order shift of the clock frequency
vanishes, and we need to proceed to the third-order dia-
grams [Figs. 1(b)–1(e)]. We carried out relativistic many-
body calculations of these diagrams and found that there is
no magic wavelength for the Cs clock (see Ref. [10] for
details). This is in contrast to findings of Ref. [11], where a
multitude of magic wavelengths was identified. We notice
that for the Cs atom, for nonzero MF clock states, the
magic conditions may be attained by additionally varying
the angle between the quantizing B field and the optical
axis [12]. Qualitatively, for Cs, the tensor contribution to
the clock shift is much smaller than the scalar contribution,
and this leads to unfavorable conditions for reaching the
cancellation of the scalar and tensor shifts in Eq. (2).
We conclude that to cancel the third-order light shift we

need to find atoms where the scalar and tensor shifts are
comparable. This happens for atoms having the valence
electrons in the p1=2 state. For nonzero nuclear spin, the

p1=2 state has two hyperfine components that may serve as

the clock states. Moreover, since the electronic angular
momentum J ¼ 1=2, for the linear polarization the leading
second-order shift of the clock frequency vanishes. This is
similar to the Cs s1=2 case. The advantage of the p1=2 state

comes from the fact it is part of a fine-structure manifold:
there is a nearby p3=2 state separated by a relatively small

energy interval determined by the relativistic corrections to
the atomic structure. The hyperfine interaction between the
states of the same manifold is amplified due to small
energy denominators entering the top and bottom diagrams
of Fig. 1. The amplification occurs only for the tensor
contribution. For the scalar contribution the intermediate
state must be of the p1=2 symmetry, whereas for the tensor

contribution the intermediate state must be of the (strongly
coupled) p3=2 symmetry.

We illustrate this qualitative discussion with numerical
examples for the group III atoms. We start with aluminum
(Z ¼ 13). The clock transition is between the hyperfine
structure levels F ¼ 3 and F ¼ 2 in the ground 3p1=2 state

of the 27Al isotope (I ¼ 5=2). The clock frequency has
been measured to be 1.506 14(5) GHz [13], placing it in the
microwave region. The clock frequency is 6 times smaller
than that for Cs; this leads to a decreased stability of the Al
clock. At the same time, the interrogation times in lattices
may be substantially longer than in a fountain, improving
the stability. Moreover, realizing a clock in an optical
lattice is an important step towards harnessing a vast
improvement in sensitivity offered by massive entangle-
ment [14] (as in quantum information processing). Should
such a massive entanglement be attained, the stability of
the �Magic clock would greatly improve.
The �Magic clock requires ultracold atoms. Cooling Al

has already been demonstrated [15] with the goal of atomic
nanofabrication. The laser cooling was carried out on the
closed 3p3=2 � 3d5=2 transition with the recoil limit of

(e)(d)(c)(a) (b)

x

FIG. 1. Contributions to the dynamic polarizability �ð!Þ.
Interactions with the laser photons are shown with wavy lines
and hyperfine interaction with the capped solid line. (a) Second-
order �ð2Þð!Þ. Contributions (b)–(e) are the third-order contri-
butions to polarizabilities’ (b) top, (c) center, (d) bottom, and
(e) normalization diagrams.
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7:5 �K. Once trapped, the atoms can be readily transferred
from the metastable 3p3=2 cooling state to the ground

(clock) state. Lattice-trapped Al was also considered for
quantum information processing [16].

Using relativistic many-body theory we computed the

polarizabilities for the two experimental geometries (B k k̂
and B k "̂) and found three magic frequencies:

B k k̂: ��
L ¼ 390 nm; �Sð!�

LÞ ¼ �211 a:u:;

��
L ¼ 338 nm; �Sð!�

LÞ ¼ þ142 a:u:;

B k "̂: ��
L ¼ 400 nm; �Sð!�

LÞ ¼ þ401 a:u:

(3)

The first and third magic wavelengths presented here are
blue- and red-detuned from the 3p1=2 � 4s1=2 transition at

394.5 nm, respectively, whereas the second one may be
regarded as red-detuned from the 3p1=2 � 3d3=2 transition
at 308.3 nm. The existence of the magic wavelengths could
be verified by measuring the clock shifts in an atomic beam
illuminated by lasers tuned somewhat below or above !�

L

(i.e., by ‘‘bracketing’’), as in Ref. [10]; clock shifts would
have opposite signs for the two frequencies of the lasers.

The third-order Stark shifts of the clock levels as a
function of !L are shown in Fig. 2. At the magic wave-
length the Stark shifts are identical and the clock transition
is unperturbed. The cancellations between scalar and ten-
sor contributions in Eq. (2) to the clock shift are illustrated
in Fig. 3.

The values of polarizability �Sð!�
LÞ determine the

depths of the optical potentials. In general, a laser of
intensity 10 kW=cm2 would be able to hold atoms of
temperature 10 �K. The atoms are trapped in the intensity
minima of the standing wave for �Sð!�

LÞ< 0 and in the
maxima otherwise. Both cases are realized depending on
the geometry. For the blue-detuned case, one could use
hollow beams to confine atoms in the radial direction.
Presently, the factor limiting the accuracy of the neutral-

atom clocks is the black-body radiation (BBR), which
arises due to an interaction of a thermal bath of photons
at ambient temperature T with the clock [7,17]. The frac-
tional contribution reads ��BBR=�0 ¼ �ðT=300 KÞ4. We
find that our computed coefficient �ð27AlÞ ¼ �8:7�
10�16 is about 20 times smaller than the coefficient for
the Cs standard. Moreover, a typical inhomogeneity of
0.1 K results in an estimate of the fractional accuracy at
10�18. The entire experimental chamber could be cooled
down cryogenically reducing the uncertainty even further;
here the small volume of the chamber offers an advantage
over the fountains [7].
While the choice of theMF ¼ 0 substates eliminates the

first-order Zeeman shift, the sensitivity to B fields comes
through the second-order Zeeman shift which appears due
to mixing of different hyperfine components by B: The
relative shift of the clock frequency is ��Zeeman=�0 �
2=9ð�BB=h�0Þ2 ¼ 1:9� 10�7B2, where B is expressed
in Gauss. This problem is similar to that in the fountain
clocks (Cs;Rb; . . . ), where specific efforts to map the

FIG. 2 (color online). Third-order shift of the clock levels
jF ¼ 3;MF ¼ 0i (dashed line) and jF ¼ 2;MF ¼ 0i (solid
line) for Al �Magic clock in the B k k̂ geometry as a function
of the lattice laser frequency. The shifts are identical at the magic
frequencies (red circles) above the 3p1=2 � 4s1=2 resonance

(vertical dotted line).

FIG. 3 (color online). Differential polarizability for Al
�Magic clock in the B k k̂ geometry as a function of the lattice
laser frequency. Dotted line, contribution from the scalar term;
dashed line, contribution from the tensor term; solid line, total
differential polarizability. Total clock shift vanishes at two
values of the laser frequency.

PRL 102, 120801 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 MARCH 2009

120801-3



magnetic field over the flight zone are made. However,
since in the lattice the atoms are confined to a tiny volume,
one could control or shield the B fields to a better degree
than in the fountain clocks.

So far we assumed that the light is linearly polarized. In
practice there is always a small degree of circular polar-
ization A present. The residual circular component leads
to an undesired clock shift through axial dynamic polar-
izability �v. This effect is equivalent to a ‘‘pseudomag-

netic’’ field along k̂. For the p1=2 clock levels �v arises

already in the second order; we find it to be in the order of
100 a.u. For the MF ¼ 0 levels the relevant clock shift is
zero in the first order in �v. However, the shift could
appear in the second order in A�v since the vector term
mixes different hyperfine components. For a typical circu-
lar polarization A� 10�5 and a misalignment angle of
10�2, the fractional frequency shift is just 10�21.

Atoms of Al are bosons, and the collisional clock shifts
may become an issue, as in the fountain clocks [18,19].
The advantage of the lattice clocks over the fountain clocks
is that one could fill the lattice with no more than one atom
per site, strongly suppressing the interatomic interactions
and the associated shifts.

Scattering of the lattice laser photons leads to heating
and reduces the interrogation time. At 10 kW=cm2 the
heating rate is in the order of 10�2 sec�1. Heating can be
suppressed by using the blue-detuned magic wavelength
for which the atoms are trapped at the intensity minima.
This also reduces effects of hyperpolarizability on the
clock shift and multiphoton ionization rates.

We have carried out a similar analysis for the 69;71Ga
atom (I ¼ 3=2), a member of the same group III of the
periodic table as Al. Cooling of this atom is pursued in
atomic nanofabrication [20,21]. The clock transition is
between the hyperfine structure components F ¼ 1 and
F ¼ 2 of the 4p1=2 ground state and has been measured

to be 2.677 987 5(10) GHz and 3.402 694 6(13) GHz for
69Ga and 71Ga, respectively [22]. In contrast to Al, for this
atom and the MF ¼ 0 sublevels, we have identified only a
single magic wavelength at 450 nm in the B k "̂ geometry.
This is red-detuned from the 4p1=2 � 5s1=2 transition fre-

quency of 403.4 nm. We find �Sð!�
LÞ ¼ 94 a:u: and a very

small BBR coefficient �ð69;71GaÞ ¼ �6:63� 10�17. We
did not find the magic wavelengths for other group III
atoms.

To summarize, we proposed Al and Ga microwave
lattice clocks (�Magic clocks). We calculated magic
wavelengths for these clocks where the laser-induced dif-
ferential Stark shift vanishes. This is a result of the oppo-
site sign contributions of the scalar and tensor
polarizabilities to the Stark shift. The tensor polarizability
in the p1=2 electron state is enhanced due to the mixing of

p1=2 and p3=2 states by the hyperfine interaction. A similar

mechanism for the magic wavelengths may work in mi-
crowave hyperfine transitions in other atoms which have
the fine-structure multiplets in the ground state. In atoms
with the valence electron in the s1=2 state (Cs;Rb; . . . ) the
magic wavelength is absent (for MF ¼ 0 clock states or
linear polarization). The present proposal opens a potential
for developing a new compact atomic clock operating in
the microwave domain.
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