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Two parts of an entangled quantum state can have a correlation, in their joint behavior under

measurements, that is unexplainable by shared classical information. Such correlations are called nonlocal

and have proven to be an interesting resource for information processing. Since nonlocal correlations are

more useful if they are stronger, it is natural to ask whether weak nonlocality can be amplified. We give an

affirmative answer by presenting the first protocol for distilling nonlocality in the framework of

generalized nonsignaling theories. Our protocol works for both quantum and nonquantum correlations.

This shows that in many contexts, the extent to which a single instance of a correlation can violate a

Clauser-Horne-Shimony-Holt inequality is not a good measure for the usefulness of nonlocality. A more

meaningful measure follows from our results.
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When two separated parts of a quantum state are mea-
sured in fixed bases, then the outcomes can show a corre-
lation. Whereas this may be surprising from a physical
point of view, it is not from the standpoint of information:
such correlations could be explained by randomness shared
when the two particles were generated.

If one considers, however, different possible measure-
ment settings on the two sides, then correlations of a
stronger kind can arise, which are unexplainable by shared
randomness only [1]: This is nonlocality.

Quantum mechanics is nonlocal but not maximally so.
There are stronger correlations still in accordance with the
nonsignaling postulate of relativity [2]. This fact motivated
the study of so-called generalized nonsignaling theories
[3,4] in which quantum correlations are a special case.
Following this general approach to nonlocality, we study
correlations between the joint behavior of the two ends of a
bipartite input-output system, characterized by a condi-
tional probability distribution PðabjxyÞ. Let x and a be
the input and output on the left-hand side of the system,
and y and b the corresponding values on the right-hand
side.

We call such a system local if it is explainable by shared
classical information. On the other hand, it is signaling if it
allows for message transmission in either direction.

John Bell has given certain inequalities that local sys-
tems must obey. Hence, violation of such an inequality is a
witness of nonlocality. In the case where both inputs and
both outputs are binary, the only such inequality (up to
symmetries) is the Clauser-Horne-Shimony-Holt (CHSH)
inequality [5]. Furthermore, the set of eight CHSH inequal-
ities is complete for binary systems in the sense that if none
of them is violated, then the system is local.

In this Letter we restrict ourselves to the state space of
binary input–binary output nonsignaling systems. We refer
to [4] for a detailed description of this set.
Nonlocal correlations are not only a fascinating phe-

nomenon, but have as well been shown to be an interesting
resource for information processing. Examples include
device-independent secrecy of quantum cryptography [6]
and nonlocal computation [7]. Furthermore, the existence
of nonlocality that is superquantum to some extent would
have dramatic consequences on communication complex-
ity [8]. This extends the fact that maximal nonlocality
would collapse communication complexity, i.e., it allows
us to compute every distributed Boolean function with just
one communicated bit [9].
The extent by which a Bell, e.g., CHSH, inequality is

violated can be taken as a measure for nonlocality. Not
surprisingly, nonlocality is a more useful resource, the
stronger it is. For instance, the violation of the CHSH
inequality gives a lower bound to the uncertainty of a third
party about the output bits of a nonsignaling system, which
is better the stronger the violation is.
Motivated by these facts, we study the problem of

whether nonlocality can be amplified: Can stronger non-
locality be obtained from a number of weakly nonlocal
systems? We consider protocols for nonlocality distillation
executed by two parties having access to weakly nonlocal
systems. The parties on the two sides can carry out arbi-
trary operations on their pieces of information, but they
cannot communicate.
Note that such protocols should not be confused with

protocols for entanglement distillation: There, the input
and output are (weakly and strongly, respectively) en-
tangled quantum states, and the allowed operations are
classical communication and local quantum operations.
The existence of certain entanglement distillation proto-
cols without communication is known [10], but this result
is independent of ours.
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There are several known impossibility results on non-
locality distillation. First, it is not possible to create non-
locality from locality, i.e., to pass the Bell bound [1].
Second, there exists no nonlocality distillation which can
pass the Tsirelson bound [11] if the nonlocal systems can
be simulated by quantum mechanics. Third, a simple in-
ductive argument shows that a system that exhibits the
algebraically maximal possible CHSH violation cannot
be obtained from weaker ones. Fourth, it has been shown
recently that the CHSH violation of two copies of isotropic
systems cannot be distilled [12]. And finally, it has been
proven in [13] that there exists an infinite number of
isotropic systems for which nonlocality distillation cannot
be achieved.

An open question which remains is whether nonlocality
can be distilled at all. We answer this question affirma-
tively.

Main result.—There exists a protocol which allows the
distillation of certain, both quantum-mechanically achiev-
able and unachievable, binary nonlocal systems.

Definitions.—A binary input-output system character-
ized by a conditional probability distribution PðabjxyÞ is
nonsignaling if one cannot signal from one side to the other
by the choice of the input. This means that the marginal
probabilities PðajxÞ and PðbjyÞ are independent of y and x,
respectively, i.e.,

X

b

PðabjxyÞ ¼ X

b

Pðabjxy0Þ � PðajxÞ 8 a; x; y; y0;

X

a

PðabjxyÞ ¼ X

a

Pðabjx0yÞ � PðbjyÞ 8 b; x; x0; y:

When using a nonsignaling system, a party receives its
output immediately after giving its input, independently of
whether the other has given its input already. This prevents
the parties from signaling by delaying their inputs.

If appropriate we represent a system by its probability
distribution PðabjxyÞ in matrix notation as

Pð00j00Þ Pð01j00Þ Pð10j00Þ Pð11j00Þ
Pð00j01Þ Pð01j01Þ Pð10j01Þ Pð11j01Þ
Pð00j10Þ Pð01j10Þ Pð10j10Þ Pð11j10Þ
Pð00j11Þ Pð01j11Þ Pð10j11Þ Pð11j11Þ

2
6664

3
7775:

Given PðabjxyÞ (P) we define the set of four correlation
functions:

XxyðPÞ ¼ Pð00jxyÞ þ Pð11jxyÞ � Pð01jxyÞ � Pð10jxyÞ;
for xy ¼ 00, 01, 10, 11. The corresponding system is local
if and only if its correlation functions satisfy the following
CHSH inequalities [5]:

jXxyðPÞ þ Xx �yðPÞ þ X �xyðPÞ � X �x �yðPÞj � 2; (1)

for xy ¼ 00, 01, 10, 11. (We use �x and �y to indicate bit
flips, that is, �0 ¼ 1 and �1 ¼ 0.)

In order to measure the nonlocality of a system we will
use the maximal violation of a CHSH inequality:

Definition 1.We define the CHSH nonlocality of a binary
input, binary output system P as

NL ½P� :¼ max
xy

jXxyðPÞ þ Xx �yðPÞ þ X �xyðPÞ � X �x �yðPÞj:

Note that NL½P�> 2 indicates that the correlation P vio-
lates the CHSH inequality and is therefore called nonlocal.
Quantum mechanics predicts violations of the CHSH

inequalities (1) up to 2
ffiffiffi
2

p
. However, this bound is only

necessary. The necessary and sufficient condition for a set
of four numbers to be reached by quantum mechanics was
found by Landau [14] and Tsirelson [15] (see also Masanes
[16]).
Lemma 1.—A set of correlation functions Xxy, xy ¼ 00,

01, 10, 11, can be reached by a quantum state and some
local observables if and only if they satisfy the following
four inequalities:

j arcsinXxy þ arcsinXx �y þ arcsinX �xy � arcsinX �x �yj � �:

Using the terms introduced above we formally define a
nonlocality-distillation protocol as follows:
Definition 2.—A nonlocality-distillation protocol is exe-

cuted by two parties (Alice and Bob) without communica-
tion. It simulates a binary input–binary output system Pn

by classical (local) operations on n nonlocal resource
systems P, such that NL½Pn�> NL½P�> 2.
Results.—In the following we present a nonlocality-

distillation protocol and distillable nonlocal resource sys-
tems. We will also present resource systems that are mea-
surable on a quantum state and can be used by our protocol
to distill (quantum) nonlocality.
We define the nonlocality-distillation protocol NDPnðPÞ

on n nonsignaling systems P between Alice and Bob as
follows: On inputs x to Alice and y to Bob the parties input
x and y to all n systems in parallel and receive outputs
ða1; . . . ; anÞ and ðb1; . . . ; bnÞ, respectively. The parties then
locally compute their output bits as a ¼ P

n
i¼1 ai (mod 2)

for Alice and b ¼ P
n
i¼1 bi (mod 2) for Bob. The whole

protocol is illustrated in more detail in Fig. 1.
For 0< " � 1 we define the following nonsignaling

system

P" ¼
1=2 0 0 1=2
1=2 0 0 1=2
1=2 0 0 1=2

1=2� "=2 "=2 "=2 1=2� "=2

2
6664

3
7775

as our nonlocal distillation resource with CHSH nonlocal-
ity NL½P"� ¼ 3� ð1� 2"Þ> 2. With probability " this
system violates a CHSH inequality to the algebraic maxi-
mum [2] and with probability 1� " it outputs perfectly
correlated random bits.
Theorem 1.—For n > 1 and 0< "< 1=2 the protocol

NDPnðP"Þ is a nonlocality-distillation protocol.
Proof of Theorem 1.—Obviously, NDPnðP"Þ describes

only classical, local operations on Alice’s and Bob’s side.
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Furthermore, NDPnðP"Þ simulates another binary input–
binary output system Pn

" with CHSH nonlocality

NL ½Pn
"�¼max

xy
jXxyðPn

"ÞþXx �yðPn
"ÞþX �xyðPn

"Þ�X �x �yðPn
"Þj

¼X00ðPn
"ÞþX01ðPn

"ÞþX10ðPn
"Þ�X11ðPn

"Þ
¼3�X11ðPn

"Þ
¼3�½Pn

"ð00j11ÞþPn
"ð11j11Þ�Pn

"ð01j11Þ
�Pn

"ð10j11Þ�:
Here, we used that X00ðPn

"Þ, X01ðPn
"Þ, X10ðPn

"Þ are constant
functions reaching the algebraic maximum of 1.
Analogously to Pn

", let P
n�1
" denote the system simulated

by NDPn�1ðP"Þ. Using
Pn
"ð00j11Þ ¼ Pn

"ð11j11Þ
¼ ð1=2� "=2Þ½Pn�1

" ð00j11Þ þ Pn�1
" ð11j11Þ�

þ "=2½Pn�1
" ð01j11Þ þ Pn�1

" ð10j11Þ�;
and

Pn
"ð01j11Þ ¼ Pn

"ð10j11Þ
¼ "=2½Pn�1

" ð00j11Þ þ Pn�1
" ð11j11Þ� þ ð1=2

� "=2Þ½Pn�1
" ð01j11Þ þ Pn�1

" ð10j11Þ�
we derive

NL ½Pn
"� ¼ 3� ð1� 2"Þ½Pn�1

" ð00j11Þ þ Pn�1
" ð11j11Þ

� Pn�1
" ð01j11Þ � Pn�1

" ð10j11Þ�
¼ 3� ð1� 2"ÞX11ðPn�1

" Þ:
Therefore, we have established

NL½Pn
"� ¼ 3� X11ðPn

"Þ ¼ 3� ð1� 2"ÞX11ðPn�1
" Þ

¼ 3� ð1� 2"Þn�1X11ðP"Þ
¼ 3� ð1� 2"Þn:

For 0< "< 1=2 we can guarantee 3� ð1� 2"Þn > 3�
ð1� 2"Þn�1, which implies NL½Pn

"�> NL½P"�. h
In the limit we have limn!1NL½Pn

"� ¼ limn!13� ð1�
2"Þn ¼ 3.
Note that the presented systems are not quantum-

physically realizable. This allows our protocol to pass the

Tsirelson bound using P" with 0< " � ffiffiffi
2

p � 1 as re-
source systems. In the following we show that nonlocality
distillation is also possible for systems available in quan-
tum mechanics. We therefore introduce a more general pa-
rameterized system (positivity is ensured by 0�", ��1):

P";� ¼
1=2� �=2 �=2 �=2 1=2� �=2
1=2� �=2 �=2 �=2 1=2� �=2
1=2� �=2 �=2 �=2 1=2� �=2
1=2� "=2 "=2 "=2 1=2� "=2

2
6664

3
7775:

This system has CHSH nonlocality 3ð1� 2�Þ � ð1� 2"Þ.
For � ¼ 0 we have P";� ¼ P".

Note that we have chosen the two example resource
systems because of their simplicity. This should not sug-
gest that these exact systems are the only systems distil-
lable by our protocol. Obviously the distillability of a
system with the presented protocol does only depend on
its correlation functions and not on the marginals.
Theorem 2.—There exist 0< �< "< 1=2 and n > 1

such that P";� is a quantum system and NDPnðP";�Þ is a

nonlocality-distillation protocol.
Proof of Theorem 2.—Protocol NDPnðP";�Þ simulates

another two input/two output system Pn
";�. By setting � <

" and following a similar reasoning as in the proof of
Theorem 1 we obtain

NL ½Pn
";�� ¼ X00ðPn

";�Þ þ X01ðPn
";�Þ þ X10ðPn

";�Þ
� X11ðPn

";�Þ
¼ 3ð1� 2�Þn � ð1� 2"Þn:

We can find values n and 0< �< "< 1=2 (for example,
n ¼ 2, " ¼ 0:01, � ¼ 0:002) such that P";� is at the same

time distillable, i.e.,

3ð1� 2�Þn � ð1� 2"Þn > 3ð1� 2�Þ � ð1� 2"Þ
and a quantum system, i.e.,

j3 arcsinð1� 2�Þ � arcsinð1� 2"Þj � �;

j arcsinð1� 2�Þ þ arcsinð1� 2"Þj � �:

Lemma 1 only guarantees that the correlation functions of
P";� are obtainable by quantum mechanics. But Alice and

Bob can make their outputs locally uniform such that the
correlation functions are preserved using shared random-

FIG. 1. The final outputs are a simple exclusive or of all the
outputs obtained from a parallel usage of the available nonlocal
resource systems.
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ness. Thus, P";� is a quantum system if its correlation

functions are obtainable by quantum mechanics.
Therefore, we can achieve NL½Pn

";��> NL½P";��, which
means that nonlocality has been distilled with quantum
systems as resources. h

A natural follow up question concerns the maximum
nonlocality our protocol can distill using the quantum
systems presented above.

Optimal parameters n, ", � maximize the term
NL½Pn

";�� ¼ 3ð1� 2�Þn � ð1� 2"Þn with respect to the

conditions that NL½Pn
";��> NL½P";�� and that P";� is a

quantum system (Lemma 1). The maximal nonlocality
that can be distilled by NDPnðP";�Þ is

NL ½Pnmax

"max;�max
� ¼ 1þ ffiffiffi

2
p

;

where nmax ¼ 2, "max ’ 0:30866 and �max ’ 0:03806.
A new measure of nonlocality.—The possibility of dis-

tillation motivates the definition of a new measure for
nonlocality, namely, the maximal CHSH violation achiev-
able from many realizations of a given system by any
distillation protocol.

As an example application consider the computation of
the nonlocally distributed version of the AND function:
Two separated parties are given inputs x1, x2 and y1, y2,
respectively, and have to find outputs a and b, such that the
probability of obtaining

a � b ¼ ðx1 � y1Þ ^ ðx2 � y2Þ (2)

is maximal. Quantum mechanics allows no advantage over
the optimal, classical strategy [7]. Rearranging (2) yields a
strategy with success probability directly related to the
CHSH violation of a given resource system. By nonlocality
distillation of copies of our arbitrarily weak nonlocal sys-
tem P" a higher success probability above the quantum
bound can be reached. This illustrates that distillable sys-
tems like P"—although located arbitrarily ‘‘close’’ to the
quantum bound—are a stronger computational resource
than any quantum system. Therefore, we obtain a separa-
tion of quantum and post-quantum correlations below the
Tsirelson bound in terms of information processing power.

Conclusion.—We have shown that nonlocality of binary
input–binary output systems, measured by how strongly
the CHSH inequality is violated, can be amplified. More
precisely, we have shown that certain systems which ex-
hibit an arbitrarily weak violation of a CHSH inequality
(achieving 2þ 2"), but that are nevertheless not realizable
by quantum physics, can be distilled.

Furthermore, we show that even certain quantum-
mechanically achievable systems can be distilled:
Interestingly, the achievable limit by our protocol is then

the exact mean (1þ ffiffiffi
2

p
) between the classical (2) and the

quantum (2
ffiffiffi
2

p
) bounds.

Our result complements previous ones, stating that the
distillability of nonlocality of two isotropic systems is
impossible [12] and at most very limited in general [13].
Isotropic systems are an important special case because
they are the worst case with respect to distillability, i.e.,
every nonsignaling system can be turned into an isotropic
system such that nonlocality is preserved using shared
randomness only (this transformation is known as depo-
larization [17]). Therefore, these nondistillable isotropic
systems cannot be used to simulate the distillable resources
defined here. In other words, bipartite isotropic and non-
isotropic nonsignaling (and quantum) systems are in gen-
eral inequivalent correlations, although they exhibit the
same violation of the CHSH inequality.
The possibility of distillation motivates the definition of

a new measure of nonlocality. Clearly, this measure is
significant in any context where nonlocality is used as a
resource for information processing, and where the number
of realizations available is not limited to one.
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