
Kingsbury et al. Reply: The preceding Comment [1] by
Finn, Jacobs, and Sundaram further investigating our sys-
tem is indeed relevant. Their results, particularly the com-
plete absence of chaos for the � ¼ 0:3 case, are somewhat
surprising and inconsistent with our results.

Our published results reported analysis on the in-
principle experimentally accessible time series. For � ¼
0:125 Poincaré sections indicate a chaotic attractor at � ¼
0:01, which is altered but persists for � ¼ 0:3 and disap-
pears for � ¼ 1. For � ¼ 0:3, Poincaré sections show no
chaos at � ¼ 0:01, an attractor for � ¼ 0:3, which disap-
pears for � ¼ 1. The power spectra for hX̂ðtÞi for all six
cases agree with the above. Further, the � ¼ 0:3 results
look extremely similar for the two � cases.

We have since used the TISEAN package [2], performing
phase-space delay reconstruction with hX̂ðtÞi to obtain �.
We see qualitative agreement with our previous results (see
Fig. 1). We estimate � for respective (�, �) pairs (approxi-
mately, since they derive from finding the slope of the
straight line parts of these curves) as: ð0:125; 0:01Þ � 0:1,
ð0:125; 0:3Þ � 0:16, ð0:125; 1:0Þ< 0:05, ð0:3; 0:01Þ<
0:03, ð0:3; 0:3Þ � 0:13, ð0:3; 1:0Þ< 0:05. In short, this
agrees with our previous conclusions about where chaos
exists. Interestingly, using �, the transition from quantum
to classical behavior appears to be nonmonotonic for both
instances of �.

Our three methods of analysis (Poincaré sections, power
spectra, and time-series Lyapunov exponents) are all con-
sistent with each other, and consistent with our physical
understanding of how the chaos emerges and/or is
swamped by quantum effects. Finn et al.’s calculation is
inconsistent with this for the one ‘‘mesoscopic’’ case of
ð�; �Þ ¼ ð0:3; 0:3Þ and we are particularly surprised that
their results for the (0.125, 0.3) and (0.3, 0.3) cases are so
different. It is possible that the chaos is a finite-time ef-
fect in a system where the infinite-time limit is nonchaotic.
Of course, finite-time behavior is also physically impor-
tant, and could be of greater physical relevance than the
mathematical infinite-time limit in real experimental
applications.

We expect that understanding the source of this differ-
ence—provided it is not due to technical errors—will
reveal something deeper about the physics, or about the
difference between the methods of analysis. Behind the
immediate questions about the behavior of this model
system stands the larger fundamental question of whether
quantum corrections always regularize and suppress cha-
otic dynamics. We believe that this, while often true, is not
universal. For the quantum state diffusion equations (or
equivalent stochastic Schrödinger equations) it is ex-
tremely unlikely that such a highly nonlinear equation
has a priori a monotonic parameter landscape. Our per-

spective is supported, for example, by Bhattacharya et al.
[3]. It is only a matter of more systematic investigation to
find other such counterexamples to the folklore.
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FIG. 1 (color online). Each plot shows the divergence
Sð�;m; tÞ ¼ ln½�ðtÞ� of nearby points in the reconstructed phase
space for a given �, � pair. There are several curves in each plot
with different delay embedding dimension m; for each m there
are curves corresponding to several different neighborhood radii
� in the reconstructed phase space. Exponential growth appears
as linearity before the trajectories reach saturation; the slope is
proportional to �. See Ref. [2] for details on the technique.
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