
Comment on ‘‘Nonmonotonicity in the Quantum-
Classical Transition: Chaos Induced by Quantum
Effects’’

In a recent Letter [1], Kapulkin and Pattanayak pre-
sented results regarding the chaotic behavior of the damped
Duffing oscillator as it undergoes the transition from quan-
tum to classical dynamics, this transition being induced by
a model of continuous observation referred to as quantum-
state diffusion [2]. They present evidence that a Duffing
oscillator, sufficiently damped so that it is not classically
chaotic, becomes chaotic in the transition region. If true,
this would be a striking result. However, Kapulkin and
Pattanayak did not calculate the Lyapunov exponent for
the system, usually regarded as the litmus test of chaos.
Here we perform this calculation, which throws consider-
able doubt upon the conclusions in [1].

Since dynamical systems become very noisy as they
pass through the transition, to calculate a Lyapunov ex-
ponent at all, one must separate the sensitivity (chaos)
induced by the deterministic dynamics from the unpredict-
ability due to the noise. This can be achieved by comparing
the evolutions of the system for two nearby points in phase
space, using the same noise realization for both. If the
separation of these trajectories, given by the usual distance
in Hilbert space, is �ðtÞ, then the Lyapunov exponent is
� ¼ limt!1flim�ð0Þ!0ðln½�ðtÞ=�ð0Þ�=tÞg.

To calculate � numerically, �ðtÞ must remain suffi-
ciently small during the entire evolution that its dynamics
is described to high accuracy by the dynamics of the
system linearized about either of the trajectories. This
can be realized by periodically rescaling one of the trajec-
tories towards the other along a line in the state space of the
system (which in our case is simply the Hilbert space). This
elegant procedure, a version of the Wolf method [3], works
because the linearized dynamics is unaffected by the size
of�ðtÞ. We calculate the Lyapunov exponent by evolving a
pair of trajectories for �7000 periods of the driving. To
increase the accuracy, we averaged the resulting exponent
over 124 pairs, each with a different noise realization. For a
given pair, the result obtained for the Lyapunov exponent,
after evolving for a time t, initially falls as 1=t, and then
flattens out as it approaches and stabilizes at the true value.
We report either this stabilized value, with the error deter-
mined by the spread over the different noise realizations
(this error reduces as t increases), or, if the estimated value
never flattens out, we report the resulting upper bound on
the Lyapunov exponent.

The Hamiltonian for the Duffing oscillator used in [1] is
given by
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where X and P are position and momentum scaled so that

½X; P� ¼ i, and ! is a frequency. Since the initial factor of
@ does not affect the dynamics, the size (action) of the
system with respect to @ is entirely captured by the pa-

rameter � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!l2Þp

, where m and l are, respectively,
a mass and length scale. Damping given by _P ¼ ��P is
induced by the quantum-state diffusion model [2]. Scaling
time by 1=!, Kapulkin and Pattanayak use the parameters
� ¼ 1, g ¼ 0:3, and either � ¼ 0:125 (classically chaotic)
or � ¼ 0:3 (classically unchaotic). Our results for these
two cases are shown in Fig. 1. For the classically chaotic
case, the Lyapunov exponent decays as expected as @

increases, and the system moves into the quantum regime.
However, when the system is not classically chaotic, the
Lyapunov exponent remains zero throughout. At least, our
results place an upper bound on this exponent of 10�3. This
throws considerable doubt on the conclusion in [1] that
chaos emerges in the transition region for this system.
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FIG. 1 (color online). The Lyapunov exponent for the damped
quantum Duffing oscillator as a function of the inverse system
size, �2. For �2 ¼ 0:01, the system is essentially classical. The
red circles give the Lyapunov exponent, �, while the blue
triangles give upper bounds on �. (a) Small damping so that
the oscillator is chaotic in the classical regime; (b) larger damp-
ing so that the classical oscillator has no chaos.
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