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We analytically describe a transition scenario to self-organized criticality (SOC) that is new for physics

as well as neuroscience; it combines the criticality of first and second-order phase transitions with a SOC

phase. We consider a network of pulse-coupled neurons interacting via dynamical synapses, which exhibit

depression and facilitation as found in experiments. We analytically show the coexistence of a SOC phase

and a subcritical phase connected by a cusp bifurcation. Switching between the two phases can be

triggered by varying the intensity of noisy inputs.

DOI: 10.1103/PhysRevLett.102.118110 PACS numbers: 87.18.Sn, 05.65.+b, 64.60.Ht, 89.75.Fb

The concept of self-organized criticality (SOC) [1] de-
scribes a variety of phenomena ranging from plate tecton-
ics [2], the dynamics of granular media [3] and stick-slip
motion [4] to neural avalanches [5]. These examples have
in common that a marginally stable dynamics is main-
tained by self-tuning of parameters towards critical values
and that the event sizes obey a characteristic power-law
distribution. When criticality had been observed also in
neural systems [6] a number of studies addressed its func-
tional role: Criticality was shown to bring about optimal
computational capabilities [7], optimal transmission [6]
and storage of information [8], and sensitivity to sensory
stimuli [9].

In analogy to the physical systems mentioned above, the
strength of the interaction among the neural units by
synaptic connections has been identified as a critical pa-
rameter [5]. In real neural systems the connection strengths
are not static but depend on the relative timing of the neural
activity pulses [10]. Numerical simulations [11] indicated
that the dynamics of the synaptic efficiencies may account
for the occurrence of SOC in neural systems. While the
system with static coupling has a classical critical point [5],
we show analytically that the adaptive model attains criti-
cality in an extended region of the parameter space that is
bounded by phase transitions. The critical region of the
connectivity parameter (at least in the case of a finite
network, cf. below) is sandwiched between a sub- and a
supercritical regime which also can be reached experimen-
tally by a manipulation of the synaptic strengths. The
system exhibits a rich dynamical behavior including a
hysteresis between critical and noncritical dynamics,
switching of the dynamics in dependence of external in-
puts, and first- and second-order phase transitions that form
a cusp bifurcation. Although presented in the specific
context of a neuronal model, this dynamical structure is
of more general interest as the first observation of a com-
plex classical bifurcation scenario combined with a SOC
phase.

We consider a system of neurons (threshold integrators)
that interact by exchanging short pulses of activity. In the
neurophysiological interpretation, these action potentials
or spikes are transformed into chemical signals that are
transmitted across the synaptic cleft in between two neu-
rons. The amount of transmitter emitted at a synaptic
terminal depends only on the relative timing of arriving
pulses. We denote this amount by Jij and the fraction that is

available for signaling at a given moment by uij 2 ½0; 1�,
where i and j refer to the pre- and postsynaptic neurons,
respectively. We can express the interaction strength by the
product uijJij. The state hi � 0 of neuron i ¼ 1; . . . ; N

represents the membrane potential and obeys the following
equation:

_h i ¼ �i;�ðtÞI þ 1

N

XN

j¼1

uijðtspÞJijðtspÞ�ðt� tjsp � �dÞ: (1)

By the first term a neuron is selected to receive an external
input of strength I, where ��;� (�i;� ¼ 1 if i ¼ � and �i;� ¼
0 otherwise) is the Kronecker symbol. � denotes a random
process with an event rate ��1

s . We assume that I scales

with the system size as I ¼ I0
N for numerical simulation and

analysis in the thermodynamical limit. A spike from neu-
ron j is assumed to affect neuron i precisely after a delay �d
and enters Eq. (1) via Dirac’s delta function (�ðtÞ ¼ 0 if
t � 0 and

R
�ðtÞdt ¼ 1).

When the membrane potential hi � 0 exceeds a certain
threshold � at time tisp then neuron i emits a spike. It is then

reset by subtracting the threshold �: hiðtþspÞ ¼ hiðtspÞ � �.

Synaptic activity also reduces the amount of neurotrans-
mitters such that Jij is diminished immediately after a

spike [12]. In between spikes, the resources recover and
Jij approaches its resting value �

u0
at a time scale �J,

_J ij ¼ 1

�J

�
�

u0
� Jij

�
� uijJij�ðt� tjspÞ: (2)
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There is experimental evidence that the value of uij is also

subject to an activity-dependent dynamics [12]. By

_u ij ¼ 1

�u
ðu0 � uijÞ þ ð1� uijÞu0�ðt� tjspÞ (3)

the effective synaptic strength increases through the acti-
vation of silent resources inside the synaptic terminal.
Thus, while the dynamics of Jij has a depressive effect

on the neural activity, activity-related changes in uij tend to

facilitate the neural response. During pauses, uij decays

with a time scale �u towards its minimal value u0, i.e., the
minimal level of activated synaptic resources [12]. The
quantity �

u0
in Eq. (2) is the main parameter of the model

which represents the maximum of a synaptic strength of a
synapse.

The joint effect of facilitation and depression depends on
the time scales �u and �J which are assumed to be slow
compared to the external input, i.e., �J ¼ �J�sN, �u ¼
�u�sN, and 1< �J, �u � N. For simplicity we assume
�J ¼ �u ¼ �. However, for �J � �u the same qualitative
behavior was found in the critical state with accordingly
modified values of u0 and �.

Each firing event increases the probability that other
neurons are activated such that a number of neurons may
join the externally triggered activity and create a neural
avalanche. Roughly speaking, when the avalanches are
large and neurons fire often, synaptic depression is domi-
nant and causes a reduced activity and, therefore, smaller
avalanches. On the other hand, sparse firing events lead to
almost fully recovered synapses and the facilitation of the
synapses becomes essential. The distribution of the number
of neurons participating in an avalanche depends on the
value of �. Qualitative changes occur at two critical values
ac ¼ 0:533 and �c ¼ 0:543 (for the parameters used in
Fig. 1, for other parameters cf. Fig. 5). The subcritical
regime at small �< �c is characterized by a negligible
number of avalanches that extend to the size of the system.
At large � � �c many large avalanches occur and the
distribution becomes nonmonotonic. In between �c and
�c and for some interval beyond �c the system has an
approximate power-law distribution for a large volume of
initial conditions. Between �c and �c the subcritical
branch persists, cf. Fig. 1. At the boundaries of the interval
[�c, �

c] the stationary behavior undergoes a sharp tran-
sition from subcritical to critical behavior. Along the
upper branch the distribution stays critical for a large
interval of the parameter �. The deviation from an ideal
power law (Fig. 2) is considerably smaller than in the
depressing case [13] and the region where a critical distri-
bution is suggested by the numerics increases with system
size (Fig. 2, inset). For static synapses, in contrast, the
critical region approaches a single point on the � axis.

The behavior of the network can be understood by a self-
consistency equation that relates the averages of the two
main dynamical quantities, namely, the average synaptic
strength uijJij and the interspike interval �isi. The exis-

tence of the averages is implied by the uniform bounded-
ness of uij and Jij and the mixing properties of the network

dynamics. The dynamics of uij (3) does not depend on Jij;

therefore, we first establish the dependency of uij on �isi

which is later used analogously for Jij.

In between two spikes of neuron j only the relaxation
dynamics affects the variable uij; thus, we find from Eq. (3)

uijðt�2 Þ ¼ u0 þ ð1� u0Þuijðt�1 Þe�ð�isi=�NÞ, where uijðt�1 Þ
and uijðt�2 Þ are the fractions of transmitter available before

a spike of neuron j at times t1 and t2, respectively. At

FIG. 1 (color online). Examples of distributions of avalanche
sizes in dependence on the interaction parameter �. Circles: sub-
critical distribution (� ¼ 0:52), stars: critical branch (� ¼ 0:56),
triangles: supercritical (�¼0:59) for N¼300, �¼10, u0 ¼ 0:1,
I0 ¼ 7:5. Inset: Probability of an avalanche of length L ¼ 40.
Circles are obtained by incrementing � and stars by decrement-
ing �.

FIG. 2 (color online). Deviation of the avalanche size distri-
bution from a power law for different values of the interaction
parameter �. The deviation is estimated by the minimum offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPLmax

L¼1½logPðL;N;�Þ � logc�L
��2

q
with respect to � and c�,

where Lmax ¼ N=2 introduces a cutoff. We checked the un-
biasedness of our estimation with the maximum likelihood
method. Squares represent the model with both facilitating and
depressing synaptic dynamics, circles are for depressing synap-
ses only. N ¼ 300, � ¼ 10, u0 ¼ 0:1, and I0 ¼ 7:5. The inset
shows the length of the critical interval for dynamical synapses
(filled symbols) and static synapses (empty symbols) N ¼ 500,
700, 1000.
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stationarity we have huijðt�1 Þi ¼ huijðt�2 Þi and can express

huiji in terms of h�isii,
huiji ¼ u0

1� ð1� u0Þe�ðh�isii=�NÞ ¼ G1ðh�isiiÞ: (4)

Equation (2) provides an analogous expression for hJiji:

hJiji ¼ �

u0

e1=�Nh�isii � 1

e1=�Nh�isii � 1þ huiji
¼ G2ðh�isiiÞ: (5)

Equations (4) and (5) yield the first part of the self-
consistency equation

huijJiji � G1ðh�isiiÞG2ðh�isiiÞ ¼ Gðh�isiiÞ: (6)

The average synaptic strength huijJiji does not in general

equal huijihJiji. This is, however, counterbalanced by the

opposite tendencies of the intrinsic dynamics (2) and (3).
Direct numerical simulations (Table I) and the further
results of this Letter prove that the correlation between
uij and Jij can indeed be ignored.

For the dependence of �isi on huijJiji, we take into

account that the interavalanche interval �iai has a geomet-

ric distribution Qð�iaiÞ ¼ ðI=�Þ½1� ðI=�Þ��iai
. Denoting

by �j the number of avalanches between two spikes of

the neuron j, the averages of the distributions of interspike
and interavalanche intervals are related by h�isii ¼
h�ih�iaii. The neuronal membrane potentials can be shown
to be uniformly distributed between the threshold � and a
minimal value 	N that is due to the self-interaction of the
neurons and the reset. For N ! 1 the scaling of the con-
nections implies 	N ! 0. The average interavalanche in-
terval is thus given by h�iaii ¼ ð�� 	NÞ=I.

In order to determine h�i, we compute the first passage
time to threshold �. During the interval �iai the neuron
receives an external input I with probability 1=N in a unit
time interval (time unit chosen to be �s). Therefore, the
neuron accumulates an average external input of size
Ih�iaii=N during this interval. At avalanches the neuron
receives the mean internal input huijJijihLi, where hLi is
the mean avalanche size. � can be expressed by the number
of repetitions of interavalanche intervals and the corre-
sponding avalanches, which are required to reach the
threshold �.

h�i ¼ �

�huijJiji
N

hLi þ I
h�iaii
N

��1
: (7)

The distribution of avalanche sizes is known for a network

with static synapses of strength �0 [5]. For dynamical
synapses we set �0=N ¼ huijJiji which allows us to com-

pute hLi as a function of huijJiji: hLi ¼ N
N�ðN�1ÞhuijJiji .

Combining the previous computations we obtain a rela-
tion between the interspike interval and the average syn-
aptic strength.

h�isii ¼ �2

I

� huijJiji
N � ðN � 1ÞhuijJiji þ

�

N

��1 ¼ FðhuijJijiÞ:
(8)

The combination of Eqs. (6) and (8) establishes the self-
consistency relation

huijJiji ¼ GðF½huijJiji�Þ; (9)

which can be solved graphically for any �, see Fig. 3. The
numerical results (circles in Fig. 3) are in perfect agree-
ment with the analytical solution (9) which demonstrates
the validity of the mean-field approximation.
For some values of � the graphs (6) and (8) intersect in

three points, two of which can be shown to be stable, cf.
Fig. 4. The unstable solution of the mean-field dynamics is
not observed in simulations due to the stochasticity of the
dynamics. Thus, if (i) � is smaller than a lower critical
value �c then the self-consistency equation (9) has only a
single solution. (ii) At � ¼ �c a fold bifurcation creates a
stable and an unstable branch in addition to the existing
stable branch. (iii) Until a second, upper critical value�c is
reached three solutions coexist, two of which are stable.
(iv) � ¼ �c is a second bifurcation point where initially
stable branch and the unstable branch annihilate such that
for (v) �> �c only a single solution remains, cf. Fig. 4.
The accuracy of the mean-field approximation in the

finite case (Fig. 3) suggests an analysis of the network
dynamics in the limit N ! 1. Rewriting Eq. (9)

TABLE I. Numerical evidence for the independence assump-
tion on the synaptic parameters. N ¼ 300, u0 ¼ 0:1, � ¼ 10.

� huijihJiji huijJiji jhuijihJiji � huijJijij
0.40 0.431 0.436 0.005

0.55 0.905 0.911 0.006

0.80 0.957 0.960 0.003

FIG. 3 (color online). Average synaptic strength huijJiji and
interspike interval h�isii corresponding to Eq. (8) (virtually
straight line) and, respectively, Eq. (6) for � ¼ 0:5, � ¼ �c,
� ¼ 0:54, � ¼ �c, and � ¼ 0:6 (curved lines, from bottom to
top). Circles represent numerical results for a network with
matching � and parameters N ¼ 300, � ¼ 10, u0 ¼ 0:1, and
I0 ¼ 7:5.
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�

u0

huijið1�e�ð1=�NÞh�isiiÞ
1�ð1�huijiÞe�ð1=�NÞh�isii ¼

N

N�1
� Ih�isii
�ðN�1Þ (10)

we realize that solutions exist only if �isi grows linearly in
N. The condition h�isii ¼ constN þ oðNÞ implies

�> 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0ð1� u0Þ

q
: (11)

This condition is invariant to scaling of the form I ¼
I0N

�
, 
> 0, and implies that the average synaptic
strength approaches unity for large N which is character-
istic for the critical state [5]. In the limit N ! 1 the
criticality boundary (11) equals the lower boundary of

the phase coexistence �c; i.e., the phase transition transfers
the system into criticality provided the activity of the net-
work is sufficiently high, see Fig. 5. The singular solution
remaining above the upper critical value �c is as well
critical in coincidence with the result in [13].
Our study suggests that critical properties of neuronal

dynamics in the brain may be considered as a consequence
of the regulatory mechanisms at the level of synaptic
connections. By elucidating the relation between the ele-
mentary synaptic processes and the network dynamics our
mean-field approach revealed a macroscopic bifurcation
pattern, which can be verified experimentally, e.g., through
predicted hysteresis. Furthermore it may be able to explain
observations of up and down states in the prefrontal cortex
[14] as well as the discrete changes in synaptic potentiation
and depression [15] as a network effect. The relation
between neural activity and average synaptic strength,
which we derived here, may account for the reported all-
or-none behavior.
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FIG. 4 (color online). Bifurcation diagram representing the
solutions of the self-consistency Eq. (9). The effective synaptic
strength huijJiji is plotted vs the interaction parameter �. The

insets assign the graphs of Fig. 3 to the corresponding regions by
choosing each time a typical � value. N ¼ 300, � ¼ 10, u0 ¼
0:1, and I0 ¼ 7:5.
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FIG. 5. A cusp is formed in the (�, u0) plane by the mergence
of the two critical branches �c and �c into a critical point. The
graphs are obtained from Eq. (9) for N ¼ 300 (bold), N ¼ 1000
(semibold), and N ! 1 (dashed). For N ! 1 the cusp is at
ð�; u0Þ ¼ ð1; 12Þ. In the interior of the cusp shape, Eq. (9) has

three solutions, one of which corresponds to a critical phase and
extends also to larger values of �. The other stable solution is
subcritical and exists also below the cusp. At values of u0 below
the critical point, the critical phase is reached by a first-order
phase transition for N ! 1, while for higher u0 values critical
behavior is reached by a second-order transition. Further pa-
rameters are: � ¼ 10, I0 ¼ 7:5.
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