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The extraction of membrane tubes by molecular motors is known to play an important role for the

transport properties of eukaryotic cells. By studying a generic class of models for the tube extraction, we

discover a rich phase diagram. In particular we show that the density of motors along the tube can exhibit

shocks, inverse shocks, and plateaux, depending on parameters which could in principle be probed

experimentally. In addition the phase diagram exhibits interesting reentrant behavior.

DOI: 10.1103/PhysRevLett.102.118109 PACS numbers: 87.16.A�, 05.40.�a, 64.60.�i, 87.16.Nn

Molecular motors play a fundamental role in intracellu-
lar traffic [1], being responsible for the transport of vesicles
and the extraction of membrane nanotubes [2]. The latter
phenomenon is of particular interest as it requires a coop-
erative effort between many motors. This remarkable col-
lective behavior has been demonstrated in vitro only very
recently [2], triggering much interest in the features of the
‘‘tubulation,’’ with a particular focus on the dynamics of
the tip region. Objects of study include the conditions for
the formation of tubes, their velocities, the load exerted on
and by the motors, the distribution of motors along the
tube, and the role of processivity [2–5]. In vitro, a tube can
be created when a vesicle coated with kinesins is brought
near a microtubule [2]. It is generally believed [3] that two
regimes are then observed depending on the motor density:
below a critical density, the motors which bind to the
microtubule are not able to extract a tube; above the critical
density tubulation occurs and the motors pull a tube out of
the vesicle, at steady velocity. During this process motors
constantly bind and unbind from the microtubule, while
remaining bound to the membrane (see Fig. 1). In this
regime, the density of motors is predicted to be flat, with
some structure near the tip region [3]. The critical density
and the velocity of the tube have been shown to be very
sensitive to details of the tip region, such as the number of
motors clustered there and their coordination [6].

In this Letter, on the other hand, we focus on the regime
where tubulation is established and study the collective
behavior of motors in the bulk of the system. We consider a
generic model of two coupled lattices representing bound
and unbound motors. By accounting for excluded volume
interactions, neglected in [3], we discover a richer phase
diagram than previously expected. The tubulation regime
now divides into two different phases with reentrant tran-
sitions between them. Both phases could in principle be
accessible to experiment by control of the vesicle density.
As we show, the phase diagram is governed by the bulk
dynamics and the effective tip velocity; it is thus insensi-
tive to the precise details of the dynamics of the tip region.

We first describe the phenomenology predicted by our
study. The motor density profile comprises two plateaux
emerging from the tip of the tube and the vesicle, respec-
tively. These plateaux meet in the bulk of the system which
leads to a discontinuity—a kink—in the density profile.
The system can be in two different phases, illustrated in
Fig. 2: (i) a kink phase, in which the tip density is either
larger or smaller than that of the vesicle, the two plateaux
being connected accordingly by a shock or an inverse
shock in the bulk of the system, and (ii) a tip phase where
the kink travels toward the vesicle and localizes in its
vicinity, thus yielding a constant density profile corre-
sponding to the tip density. Apart from a carefully chosen
set of parameters, the kink is never at rest, always traveling
away from the tip of the tube and either toward (tip phase)
or away from the vesicle (kink phase). In the latter case, the
kink moves away from both boundaries, which is possible
because the tube is extending. The transition between the
two different phases, and also the transition from ‘‘shock’’
profile to ‘‘inverse-shock’’ profiles within the kink phase,
can be triggered, for instance, by changing the value of the
vesicle’s density (see the phase diagrams in Fig. 2).
Furthermore, the phase diagram is reentrant: by continu-
ously increasing the vesicle’s density, one can go from the

FIG. 1 (color online). Illustration of tube extraction. Molecular
motors are attached to the membrane and can bind and unbind
from the microtubule. Two frames of reference are used in the
text: the ‘‘tip frame’’ is comoving with the tip, with site labels
increasing toward the vesicle; the ‘‘lab frame’’ where the vesicle
is stationary and the site labels increase towards the tip.
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kink phase to the tip phase and back again into the kink
phase.

In nonequilibrium statistical physics, shocks play an
important role for driven lattice gas models [7] but the
phenomenology described here differs from previously
studied biophysical traffic problems [8]; reentrance is un-
usual and previously observed inverse shocks required
slow particles, static defects, or special current-density
relations [9].

Definition of the model.—The microscopic details of the
model are as follows (see Fig. 3). We consider two coupled
one-dimensional lattices, for bound and unbound motors,
which extend from the vesicle to the tip of the tube. A
motor bound to the microtubule steps toward the tip of the
tube at rate p, provided the arrival site is empty. Each site
of the unbound motor lattice accounts for a whole perime-
ter of the tube, which in experiments exceeds 100 nm [2]
and can contain many motors. For the sake of clarity we
thus neglect the exclusion on this lattice and assume that
unbound motors diffuse freely at rate D. Partial exclusion
could be taken into account: for realistic values of the
parameters (see below), it does not modify qualitatively
the phase diagram and just obscures the algebra [10].
Finally, motors attach at rate a to an empty site and detach
at rate d from the microtubule.

A complete description of the tube dynamics would also
include the details of the dynamics in the vicinities of the
tip and the vesicle. As shown numerically in [6], these
details are important for establishing the conditions for
tubulation. However, as demonstrated below, the form of
the phase diagram is insensitive to these details and relies
on the fact that the tube has a well-defined mean velocity
during tubulation. We thus posit that extension and retrac-
tion events occur with rates vþ and v�, yielding a tube
velocity vtip ¼ vþ � v�. Also, since the viscosity of the

membrane is 2 orders of magnitude larger than that of the
buffer [3], the unbound motors are dragged every time the
tube extends or retracts (see Fig. 3). Under these conditions
our results encompass a whole class of models for the tube
dynamics including, for instance, those considered in [6].
We now derive the different phases within a mean-field
analysis.
Mean-field (MF) theory.—In the analysis that follows it

will be useful to consider two distinct frames of reference:
the lab frame, where the vesicle is stationary and the site
labeling starts at the vesicle and increases toward the tip of
the tube; the tip frame, which is comoving with the tip of
the tube, and where the site labeling starts at the tip and
increases toward the vesicle (see Fig. 1). In the tip frame,
the mean-field equations read

_� i ¼ �Jbi þ Jbi�1 þ Ki; _�i ¼ �Jui þ Jui�1 � Ki:

(1)

Here, �i and �i are the average occupancies of bound and
unbound motors at site i. The current of bound motors
moving between sites iþ 1 and i is given by Jbi ¼ �pð1�
�iÞ�iþ1 þ vþ�i � v��iþ1 whereas the current of unbound
motors reads Jui ¼ �D½�iþ1 � �i�. Both currents are de-
fined to be positive in the direction of increasing i, i.e.,
when they transport motors away from the tip. Also, in the
tip frame, extension and retraction of the tube affects the
bound motors throughout the lattice, whence the contribu-
tion of vþ and v� to Jbi . Last, Ki ¼ a�ið1� �iÞ � d�i is
the flux of motors between the two lattices. The counter-
part of these equations in the lab frame (i increasing toward
the tip) is easily obtained:

_� i ¼ �jbi þ jbi�1 þ Ki; �i ¼ �jui þ jui�1 � Ki;

(2)

where jui ¼ �Dð�iþ1 � �iÞ þ vþ�i � v��iþ1 and jbi ¼
p�ið1� �iþ1Þ are the unbound and bound currents. Here
also, currents are positive in the direction of increasing i.
As we now show, the velocity of the tip of the tube

selects plateau densities of bound and unbound motors,
which we call �t and �t, respectively. At the other end, the
density of motors on the vesicle selects in general different
plateau densities which we call �v and �v. To derive the
steady-state plateau densities, we assume constant �t;v and

�t;v in either (1) or (2). This yields a zero flux between the

two lattices Ki ¼ 0, implying for any pair of plateau
densities � and �

FIG. 3 (color online). Coupled lattice model for the bulk
dynamics. The sites are labeled in the lab frame. The bottom
and top lattices represent bound and unbound motors, respec-
tively. Possible transitions of motors in the bulk are illustrated by
arrows in the left panel. The right panel shows how extension
and retraction of the tube drag the unbound motors in the bulk.

FIG. 2 (color online). Possible phase diagrams depending on
the value of the ratio d=a of detachment to attachment rate. The
axes represent the densities (�t, �v) of bound motors in the tip
and vesicle plateaux. (a) 1=4 � d=a. The system presents either
shock or inverse-shock profiles. (b) 1=8< d=a < 1=4. The tip
phase appears inside the shock region. (c) d=a � 1=8. The
boundary of the tip phase moves into the inverse-shock region.
In cases (b) and (c), reentrant transitions are possible, e.g., along
the vertical blue (or gray) line.
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� ¼ d�=½að1� �Þ�: (3)

Let us first consider the tip plateau values �t and �t using
Eq. (1). Adding upper and lower lattice contributions
yields a conservation equation for the total flux

Ft � Jbi þ Jui ¼ 0: (4)

The total flux Ft flowing through the tip plateau in the tip
frame has to equal zero as nothing can move to the left of
site 1. Using the explicit expressions of Jbi and J

u
i in (4) and

relation (3) yields

�t ¼ 1� vtip

p
; �t ¼ d

a

�
p

vtip

� 1

�
: (5)

Note that we do not specify equation (or dynamics) near
the tip region. Solving such equations will give (generally
complicated) relations between the rates at tip region and
values of vtip, �t, and �t while leaving Eq. (5) unmodified.

They will therefore not influence our results.
The vesicle plateau, however, is determined by the den-

sity of motors on the vesicle and the details of the nearby
dynamics. While such equations can be solved for specific
models, to analyze the phase diagram it is enough to know
that �v can take any value between 0 and 1.

Tip and vesicle plateau densities are typically different
which suggests the possibility of a kink phase with shock
and inverse-shock profiles when �t > �v and �t < �v re-
spectively. Generally, the kink is not at rest and this phase
disappears if it propagates to either end of the system. To
analyze this, we consider the kink velocity in the tip frame
vk
t and in the lab frame vk

l . Conservation of mass implies

vk
t ¼ ðFt � FvÞ=ð�t � �vÞ, where Ft;v and �t;v ¼ �t;v þ

�t;v are the total fluxes and densities to the left and right of

the kink, in the tip frame. Fv reads Fv ¼ �pð1� �vÞ�v þ
vtip�v. Using (3) and (5) to eliminate �t;v and vtip, we

obtain vk
t in terms of �t;v:

vk
t ¼ p�vð1� �tÞð1� �vÞ

ð1� �tÞð1� �vÞ þ d=a
: (6)

In the lab frame, the kink velocity is vk
l ¼ vtip � vk

t :

vk
l ¼ pð1� �tÞ � p�vð1� �tÞð1� �vÞ

ð1� �tÞð1� �vÞ þ d=a
: (7)

Since �t;v are smaller than 1, vk
t is necessarily positive;

i.e., the kink always propagates away from the tip.
Transposed in the lab frame, this means that the kink never
catches up with the tip. However, vk

l can be negative; i.e.,

the kink may not propagate away from the vesicle. The tip
phase indeed occurs when the kink is localized at the
vesicle and the density then equals that of the tip plateau,
except in a boundary layer close to the vesicle.

The tip phase thus requires vk
l < 0, which reads ð1�

�vÞð1� �v � �tÞ þ d=a < 0 and can only be satisfied if

�t > 2
ffiffiffiffiffiffiffiffiffi
d=a

p
: (8)

The system is then in the tip phase for �v 2 ½��; �þ�,
where

�� ¼ 1� �t
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2t � 4d=a

p
2

: (9)

When �v is not in [��; �þ] or condition (8) is not met,
the system is in the kink phase, presenting shock when
�t > �v or inverse shock when �t < �v. Note that for �t 2
½0; 1�, one always has �� > 0 and �þ < 1. The phase
diagram thus always exhibits reentrance if d=a < 1=4;
i.e., values of �t always exist for which a continuous
increase of �v drives the system from the kink phase into
the tip phase and back into the kink phase. We present the
various possible phase diagrams in Fig. 2.
Numerics.—In order to validate the theoretical predic-

tions, we now turn to simulations of a concrete model
within the class considered here. The bulk dynamics has
already been described (see Fig. 3) and we now specify
dynamics in the vicinity of the tip and the vesicle. Our
interest lies in verifying the phase diagram and to this end
we choose a particularly simple model. The vesicle is
represented by reservoirs of bound and unbound motors
of densities �0 and �0. For simplicity, they are chosen to
satisfy (3) so that there is no flux between them [11]. At the
other end, the tube extends at rate � by one lattice site if a
bound motor occupies the site next to the tip. When this
happens, the new unbound site next to the vesicle is equili-
brated with the reservoir of density �0. If a bound motor
does not occupy the site next to the tip the tube retracts
with rate �. At this site motors can still attach and detach
with rates a and d and unbound motors can hop toward the
vesicle, with rateD. At long times, this tip dynamics yields
average extension and retraction rates vþ ¼ ��1 and
v� ¼ �ð1� �1Þ.
Models aiming to predict the threshold for tubulation

and tube velocity would require modified attachment and
detachment rates at the site closest to the tip and should
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FIG. 4 (color online). Shock profiles obtained from numerics
(p ¼ 1, d ¼ :08, a ¼ 1, D ¼ 1, � ¼ 9, � ¼ 0:45, �0 ¼ 0:2).
Data are averaged over a short time window (�t ¼ 1000) and
then over 100 simulations. Left panel: Bound (upper) and un-
bound (lower) motor densities along the tube, in the tip frame, at
time t ¼ 60 000. Black lines correspond to MF predictions (5),
with vtip obtained from the simulation. Right panel: Density of

motors (black) at fixed time intervals (t ¼ 4� 104; 8� 104;
12� 104) in the lab frame. Tubes are color-coded, with light and
dark blue (or gray) representing low and high density. Note that
the tip moves faster than the shock.
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account for backward stepping there. However, as noted
above, the phase diagram depends only on the tip velocity
and not on further details of the tip dynamics.

We now consider the results of continuous time simula-
tions of the model. In Fig. 4, a typical shock profile and its
dynamics are presented. Note the quantitative agreement
with the predictions of the mean-field theory.

We have also verified the general structure of the phase
diagram and present results for the blue line indicated in
Fig. 2. The different profiles observed are presented in
Fig. 5. From previous lattice gas studies, one would expect
the inverse shock to smooth out through a rarefaction fan.
Here, on the other hand, we checked numerically that its
relative width vanishes in the large time limit; it is thus
stabilized by the interaction of the two lattices [10]. The
figure also shows that the tip velocity is independent of �v,
once tubulation is established. A mean-field analysis [10]
suggests that this holds for generic local tip dynamics.

To quantify the transition, we define � ¼ P
i�i=L� �t,

where L is the length of the tube. This compares the
average mass of bound motors in the system with that of
a putative tip phase. The parameter� is nonzero in the kink
phase and zero in the tip phase. An example of reentrance
is shown in Fig. 5. Starting with �0 close to 0, we see that�
is negative, vanishing at �0 ¼ �� where the system enters
the tip phase. A further increase of �0 above �0 ¼ �þ
drives the system back into the kink phase, in the
inverse-shock region, and � becomes positive.

Conclusion.—In this Letter we have shown that the
dynamics of tubulation reveals a rich phenomenology,
including shocks, inverse shocks, and reentrant phase tran-

sitions. This arises from the two competing densities set by
the two ends of the tube and the dynamics of the resulting
kink determines the phase structure. This picture is sub-
stantiated by a mean-field theory which accurately predicts
the phase diagram, as checked by our numerics.
Some experimental signatures of our theory are as fol-

lows. First, the velocity of the tip should always exceed
that of the kink. Also, once tubulation is established, the
velocity of the tip is not sensitive to the density of motors
on the surface of the vesicle. Last, in the experiment, the
ratio d=a ’ 0:1 is very small [6]. It should therefore be
possible to observe the transitions to the tip phase by
varying the density of motors on the surface of the vesicle.
To explore the full phase diagram presented in Fig. 2, one
needs to change microscopic rates to vary �t. Experi-
mentally, this could be done by changing parameters
such as the membrane surface tension or the ATP concen-
tration. Finally, corrections to the phase diagram due to
partial exclusion among unbound motors is of order
d=aNmax where Nmax is the maximal occupancy of the
unbound lattice [10]. Here, it would be of the order of 0.01.
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FIG. 5 (color online). Left panel: Different profiles are illus-
trated as in Fig. 4, but with t ¼ 120 000, d ¼ 0:11, and �0 ¼ 0:3,
0.6, 0.9. Note that the length of the lattice, hence the tube
velocity, is independent of �0. Right panel: Numerical value of
� (crosses) along the vertical blue (or gray) line of Fig. 2. When
�0 goes from 0 to 1, the average density of bound motors is first
lower than that of the tip plateau (�< 0, shock), then equals it
(� ¼ 0, tip phase), and last overcomes it (� ¼ 0, inverse shock).
The vertical blue (or gray) lines correspond to the predicted
boundaries of the tip phase (9). There is thus a reentrant phase
transition from the kink phase to the tip phase and back into the
kink phase, whose boundaries are accurately predicted by the
MF theory.
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