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We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it

is prone to several instabilities through the interplay of activity, polarity, and the existence of a free

surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys.

Fluids 13 1160 (2001)] on thin-film nematics. Based on our estimates the instabilities should be seen in

bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms.

We suggest several experimental tests of our theory.
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Active hydrodynamics, the collective behavior of self-
driven, orientable particles in a fluid medium, is a topic of
intense current research [1–8]. In this Letter we study the
dynamics of a film of fluid, thin in the z direction and
spread on a solid surface in the xy plane which is also the
easy plane for the orientational order parameter p of the
polar active particles suspended in the fluid. For an active
system, this polarity implies a current v0cp with respect to
the fluid, where v0 is a characteristic drift velocity and c
the concentration of active particles. While our formula-
tion is general, we study mainly the properties of pertur-
bations about an ordered, uniform reference state hpi ¼ x̂.

Our main results are as follows. (i) Active, ordered thin
films, although dominated by viscosity, not inertia, show a
wavelike response to external disturbances, as a result of
the coupled dynamics of free-surface undulations, the ac-
tive stress field, and the concentration. (ii) In large regimes
of parameter space this coupling produces a novel insta-
bility whose growth rate, to leading order in small wave

vectork ¼ ðkx; kyÞ, varies as kyk1=2x for kx � �k2y and as k
2
y

for kx � �k2y. The crossover length � ¼ �jC�0jh20=v2
0�

depends on the drift velocity v0 of the active particles, the
mean film thickness h0, the viscosity �, an orientation
mobility �, the coupling C, present in equilibrium systems
as well, of particle orientation to free-surface tilt, and the
typical active contractile or tensile stress �0 � Wc0. W is
the strength of the force-dipole associated with each active
particle, and c0 the mean concentration of active particles.
(iii) Low motility, i.e., small v0, promotes the instability
and high motility suppresses it. The instability manifests
itself in moving (convective) and static (absolute) form.
The mechanism underlying this unique instability is de-
scribed in Fig. 1. (iv) Several other modes of free-surface
instability are discussed towards the end of the Letter.

The thin-film hydrodynamics of active fluids should
enter the formation of bacterial biofilms [9] as well as
the dynamics of the lamellipodium, the flat, actin-laden
leading edge of a crawling cell [10].

We therefore consider a fluid film containing active
particles with concentration field c, and orientation field
p ¼ ðp?; pzÞ. Since we are interested here in perturbations
about a macroscopically ordered state, we set jpj ¼ 1. We
construct equations of motion for cðr?; tÞ, pðr?; tÞ, and the
height field hðr?; tÞ, i.e., the film thickness, as functions of
in-plane position r? and time t. Our treatment generalizes
[11] to the case of active systems.

The kinematic boundary condition [12] _h ¼ uz � u? �
r?h connects h to the hydrodynamic velocity field
u ¼ ðu?; uzÞ evaluated at the free surface. Incompressibil-
ity r � u ¼ 0 leads to the simplification

@thþr? �
Z h

0
u?dz ¼ 0: (1)

We eliminate u? in favor of p, c, and h through the Stokes
equation in the lubrication approximation [12] uz ¼ 0,
jr?uj � j@zuj:

�@2zu? � r?P� ẑ@zP�r � �a ¼ 0; (2)

where � and P are the viscosity and pressure field of the
fluid, and �aðrÞ ¼ WcðrÞpðrÞpðrÞ is the intrinsic stress
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FIG. 1. Top view of film with contractile polar filaments (solid
arrows) with a preference for pointing downhill. Active stresses
cause fluid flow (dashed arrows) towards the open end of a splay
perturbation, leading to film-thickness gradients. Modes prop-
agating forward experience a thickness gradient that further
torques (dash-dotted arrow) the filaments in the direction in
which they were already perturbed.
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field [3,13] of the active particles. We discuss the role of
gravity later in the Letter. W < 0 and W > 0 correspond,
respectively, to contractile and tensile activity.

The active-particle current is along p, and the particles

cannot leave the film. Thus pzðz ¼ 0Þ ¼ 0, and p � N̂ ¼ 0

at z ¼ h, where N̂ ¼ ð�r?h; 1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr?hÞ2

p
is the out-

ward normal to the free surface. So pz ’ p? � r?h at the
free surface, interpolating linearly, through director elas-
ticity [14], to pz ¼ 0 at the substrate, i.e., pz ¼ ðz=hÞp? �
r?h. Therefore in a z-averaged description pz ¼ ð1=2Þ@xh
and @zpz ’ h�1@xh. Consider small deviations [15] about a
state aligned along x̂: p? ¼ x̂þ �ŷ, � � 1. From the
foregoing discussion, the active force density has compo-
nents ri�

a
ix ¼ �0ð@y�þ @xc=c0 þ h�1@xhÞ, ri�

a
iy ¼

�0@x� and ri�
a
iz ¼ �0@

2
xh=2 to linear order. We now

eliminate the pressure P in favor of h, p and c, through
the z component of (2) and stress continuity at the free
surface z ¼ h, leading to Pðx; y; z; tÞ ¼ P0 � �r2

?hþ
�0ðh� zÞ@2xh=2, where P0 is a reference pressure and �
the surface tension of the fluid [12]. Since we are interested
in the dynamics at large scales in the xy plane, we treat the
active stresses in a z-averaged approximation, allowing us
to borrow the methods of [12] for spreading under gravity,
whose force density is z independent.

Using this in (2) and integrating twice over z with
@zu?ðhÞ ¼ 0 and u?ð0Þ ¼ 0 we get

u?ðzÞ ¼ hz� z2=2

�

�
�r?r2

?h� 1

2
�0h@

2
xr?h� f?

�
;

(3)

to linear order in perturbations of h, where f? ¼
�0½ð@y�þ @xc=c0 þ h�1@xhÞx̂þ @x�ŷ�. Using (3) in (1),

linearizing h ¼ h0 þ �h, c ¼ c0 þ �c, the in-plane
fourier-components �hkðtÞ, �ckðtÞ, �kðtÞ obey

@t�hk ¼ ��0h
2
0

3�

�
2h0kxky�k þ h0k

2
x

�ck
c0

þ
�
1� 1

2
h20k

2

�
k2x�hk

�
� �h30

3�
k4�hk: (4)

The four effects of activity on the right-hand side of (4)
are, from left to right within the square brackets,
(i) curvature-induced flow, (ii) anisotropic osmotic flow,
and, in parentheses, (iii) splay-induced flow from tilting the
free surface and (iv) an active anisotropic contribution to
the effective tension. The final term on the right of (4) is
ordinary surface tension. For contractile (�0 < 0) stresses,
term (iii) destabilizes, and the active tension in (iv) stabil-
izes, the surface; for tensile (�0 > 0) stresses the opposite
happens. The behavior of the active tension term is con-
sistent with the idea that contractile stresses pull in along
the long axis of the particles, giving additional elastic
resistance to stretching along that axis.

The dynamics of the polar orientation field p differs
from that of the conventional nematic director. First, sym-
metry cannot rule out a coupling of the form�C

R
d2xp? �

r?h which couples p? to tilts of the free surface [16]. For
C> 0 a tilt of the free surface tries to make p? point
uphill.
We can think of two possible microscopic origins for

such a term. Consider an imposed thickness variation tilt
r?h of the free surface. One end of each polar particle is in
general expected to be fatter than the other, and the parti-
cles will be best accommodated with the fat end oriented
towards the direction of increasing h. In addition, the
spatial variation in the separation between the free surface
and the fixed substrate should give rise to an electric field in
the plane. Polar particles in general have an electric dipole
moment, and will thus be oriented by this field. Secondly,
consider the spontaneous-splay term [17] Hsp �
�R

d3x ~Cr � p in the effective Hamiltonian for p, where
~C is a phenomenological parameter which can depend on

the local concentration, say ~C ¼ ~Cðc0Þ þ ~C0ðc0Þ�cþ
. . . � Cþ C0�c. Through the ‘‘equilibrium’’ part of the
dynamics of our system, the C and C0 terms will contribute
���H=�p ¼ �C�ðzÞr?h� �C0r�c to the equation of
motion for p, � being a kinetic coefficient. On dimensional
and symmetry grounds we expect C�F =R, where F is a
typical force scale and R, the radius of curvature associated
with the particle shape (see Fig. 2), is the particle thickness
divided by the fractional length difference between the two
edges of the particle.
Combining the above with the results of [3], the dynam-

ics of the angle field � becomes

@t� ¼ �a1v0@x�� �@y�cþ �ðzÞ�C@yh
þ ð�Ayx ��yxÞ þDr2�: (5)

The first term on the right-hand side of (5) is advection of �
with a speed proportional to v0 [18]. The rest, from left to
right, are coupling to concentration gradients, with � ¼
�C0, coupling to the free surface through the coefficient C,
flow-orientation coupling as in nematics [14], and gradient
elasticity of p. The first three terms are polar, and the first is
a consequence of activity. Aij ¼ 1

2 ðriuj þrjuiÞ and

�ij ¼ 1
2 ðriuj �rjuiÞ. For stable flow alignment [14]

j�j> 1.
Eliminating u in favor of � and h through (3), and

averaging over z, (5) becomes, to leading orders in k and

R

ll’

l

FIG. 2. An object with head and tail of sizes ‘ and ‘0 respec-
tively, and length ‘, produces a spontaneous curvature 1=R ’
ð‘� ‘0Þ=‘2.
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linear order in the fields,

@t� ¼ þ i�C

h0
ky�hk � ðDþk2x þD�k2y þ ia1v0kxÞ�

� ði�ky ��kxkyÞ�c; (6)

where D� ¼ D� ð�� 1Þh20�0=4�, and � ¼ ð��
1Þh20�0=4c0�.

The active contribution to particle currents with respect
to the fluid is v0cp where v0 is a drift velocity. Thus in the
lab frame of reference the continuity equation for the
concentration, apart from diffusion, is simply @t�c ¼
�r � ½ðuþ v0pÞc�. Linearizing around c0 and using (5)
and overall incompressibility,

@t�c ¼ �ic0v0ky�� iv0kx�cþOðk2x�ck; k2x�hkÞ: (7)

TheOðk2Þ terms in (7) come from including fluctuations in
px as well by explicitly including diffusion of particles.

The instability we are chiefly concerned with here, aris-
ing from the combination of activity and the tilt coupling
C, is best seen in the extreme case of immotile but active
polar particles, i.e. v0 ¼ 0 but �0 � 0. To leading order in
k the concentration plays no role, and the dynamics is
determined by (4) and (5), yielding an unstable mode in

the system which grows at a rate k1=2x ky. In detail, for time

dependence expð�i!tÞ, to leading order in k, the mode
frequency

! ¼ � 1þ isgnðkxC�0Þffiffiffi
2

p
�
�h20
3�

�
1=2jC�0kxj1=2jkyj (8)

has a real and an imaginary part; the mode displaying an
instability travels in the þx direction (�x direction) if
�0C> 0 (�0C< 0).

This instability can be understood from a simple physi-
cal picture, involving the interplay of active stresses�0 and
spontaneous splay C. To fix ideas, consider as in Fig. 1 a
long-wavelength splay perturbation on a set of contractile
filaments �0 < 0 aligned with polarization alongþx̂, with
a preference for pointing downhill (C< 0), in an initially
flat film. The active stresses then generate a flow in the film
that increases the height of the free surface ahead of the
outward-splayed filaments, and decreases the height ahead
of the inward-splayed filaments. The mode propagating
along þx̂ will then cause the filaments to sample a height
gradient that tilts the filaments in the center of the field
further to the right. The same argument, mutatis mutandis,
goes through for the tensile and/or C> 0 cases.

For motile particles, v0 � 0, let us for the moment
continue to ignore the concentration field. In the limit
�C=v0 � 1, (4) and (5) then yield mode frequencies

!1 ¼ �i
�C

v0

2�0h
2
0

3�a1

�
k2y þO

�
v0

�C

�
k2x

�
; (9)

!2 ¼ a1v0kx þ i
�C

v0

2�0h
2
0

3�a1

�
k2y �O

�
v0

�C

�
D�k2

�
: (10)

We now include the concentration via (7), but con-
tinue in the simplifying limit �C=v0 � 1. One mode
retains the purely relaxational form (9), with coefficient
modified atOð�Þ. The propagating mode in (10) becomes a
pair with speeds of order v0 �Oð�Þ, with relaxation rates
�� ðh20�0C�=�v0Þ½1þOð�Þ�k2. The results from (8) to

this point establish the main claims at the start of this
Letter. In particular, it is readily seen that (9) and (10)
crossover to (8) for kx � �k2y with � ¼ �jC�0jh20=v2

0�.

In general, (a) regardless of the sign of �0C, there is
always an instability; (b) increasing v0 weakens the insta-
bility, because a collection of filaments drifting along x
samples alternating height gradients along y whose effect
cancels; (c) for �0C> 0 the instability moves with a speed
�v0 �Oð�Þ, combining the effects of the drift speed v0

and the ‘‘pressure’’ due to � , while for �0C< 0 there is an
instability in mode !1, predominantly the height field h,
that grows without travelling, the remnant of the instability
discussed for v0 ¼ 0.
It is crucial to note here that activity and polarity con-

spire to produce the instability, at leading order in gra-
dients, even at zero motility. Motility, also a consequence
of active polarity, is encoded in the active stress only at
next-to-leading order [13]. The stabilizing effect of in-
creasing v0 at constant �0 is thus not paradoxical.
For �C=v0 � 1 all instabilities involving the interplay

of activity with the spontaneous-splay coupling C disap-
pear. The remaining instabilities involve neither polarity
nor a drift velocity. The most interesting of these, men-
tioned briefly below (4), arises as follows: Consider a flat
free surface with contractile filaments aligned along x̂, and
impose a small tilt �h / x. The filaments at the free surface
are then tilted relative to those at the substrate. The result-
ing splay in the xz plane implies that active stresses will
pump fluid towards the open end of this splayed configu-
ration, thus increasing the tilt. In addition, the instabilities
of a bulk active ordered suspension as originally discussed
in [3,5] can arise, modified here by confinement to a thin
film, and the anisotropic active tension [mentioned after
(4)], if large enough, will destabilize tensile active films at
order k4.
We now compare the relaxation rates in (8) with the

stabilizing contributions 	gh30k
2=� due to gravity, 	 being

the mass density of the film and g the acceleration due to
gravity, �h30k

4=� due to surface tension, andKk2=� due to

orientational relaxation, where K is a Frank constant. On
dimensional grounds and from standard liquid-crystal
physics [14] we take � 	 1=�, where � 	 10�3 Pa s is
the viscosity of the medium. With this estimate we find the
instability survives these stabilizing agencies provided

kh0 <min½C�0=	
2g2h30; ðC�0h0=�

2Þ1=5; C�0h
3
0=K

2�. For
� and 	 we use values for water. �0 should be of order

PRL 102, 118107 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 MARCH 2009

118107-3



fac0 ¼ 
f=a2 where f is the force exerted by the active

particle on the fluid, a the particle size, and we take the
particle volume fraction 
 ¼ c0a

3 of order unity since we
want an ordered phase. For a bacterium of size a� a few
�m moving at several �m=s through water f� 1 pN. For

thermal hard-rod systems F � kBT=‘ where ‘ is a rod

length. For �m-sized objects this would give C�
10�6 dyn=cm. For a self-propelled object, it is possibly
more reasonable to use the force-dipole strength W ¼ af
as the natural energy scale, in which case F � f. For an
object of radius 2 �m moving through water at 20 �m=s
this gives F in the range of a piconewton and thus C�
10�4 dyn=cm. For film thickness h0 ’ 20 �m, and C�
10�6 dyn=cm, the instability should be seen if kh0 &
10�3. However, this is a pessimistic estimate: First, activity
rather than thermal energy is quite likely responsible for C.
Second, the tension � for biofilms is that between the film
and the ambient aqueous medium and therefore much
smaller than the air-water value. We expect therefore that
the instability should be seen over a much wider wave
number range, possibly kh0 & 1.

The experiment of choice to test our ideas would be
to compare the dynamics of two initially flat thin films
of uniform concentration, one with highly motile bac-
teria, the other with a low-motility mutant, under condi-
tions of constant bacterial concentration. The mutant popu-
lation would correspond to a system with v0 small, and
should show our instabilities. The observations of [9] on
Pseudomonas aeruginosa are of interest in this regard, but
are complicated by the fact that the bacteria are dividing. In
all these examples, the dynamics of the bulk fluid above the
film must also be included. Since inhomogeneities in ori-
entation give rise to mass flux, the instabilities will produce
large concentration variations which will be important
especially when going beyond the linearized treatment.
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