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We carry out numerical diagonalization for much larger systems than before by restricting the fractional

quantum Hall (FQH) edge excitations to a basis that is exact for a short-range interaction and very

accurate for the Coulomb interaction. This enables us to perform substantial tests of the predicted

universality of the edge physics. Our results suggest the possibility that the behavior of the FQH edge is

intrinsically nonuniversal, even in the absence of edge reconstruction, and therefore may not bear a sharp

and unique relation to the nature of the bulk FQH state.
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The interior of a fractional quantum Hall (FQH) system
[1] is gapped, but massless excitations exist at its edge,
which constitutes a realization of a one-dimensional
electron liquid described generically by the Tomonaga-
Luttinger theory [2]. Much attention has been focused on
the edge physics since the work of Wen [3], where it was
conjectured that the exponent describing the long distance,
low energy physics of the chiral (unidirectional) FQH edge
is a unique ‘‘topological’’ quantum number for any given
FQH state, independent of details, just as the quantum Hall
resistance. Our understanding of the ordinary one-
dimensional liquids is largely based on the method of
bosonization, which exploits a one-to-one correspondence
between the fermionic and bosonic Fock spaces in one
dimension, and identifies a relationship between the opera-
tors on these spaces; specifically, the fermionic field op-

erator ĉ ðxÞ is related to the bosonic field operator �̂ðxÞ
through the expression ĉ ðxÞ � exp½�i�̂ðxÞ�, which can be
established rigorously at the operator level [2]. In the
absence of a similar rigorous derivation for the electron
field operator at the edge of a FQH system, Wen formu-
lated an effective field theory approach (EFTA) [3] wherein
he postulated that the electron operator at the edge of the
1=m FQH state, defined by Hall resistance quantization at
RH ¼ h=ð1=mÞe2, is given by

ĉ ðxÞ � e�i
ffiffiffi
m

p
�̂ðxÞ: (1)

Antisymmetry under exchange quantizes m to an odd
integer value, independent of parameters other than the
quantized Hall resistance, which leads to universal prop-
erties for the edge physics. Experiments involving lateral
tunneling of an electron from an ordinary Fermi liquid into
the edge of a FQH system allow for a direct test of this
assertion. For the fractions � ¼ n=ð2npþ 1Þ, a general-
ization of Eq. (1) predicts the tunnel current to be of the
form I � V� with a universal value of � ¼ 2pþ 1 for the
exponent. Ingenious experiments [4–7] have determined
the edge exponent from the I-V characteristics for this
geometry. While they establish the existence of non-
Fermi liquid (Tomonaga-Luttinger) behavior, with an ex-

ponent different from a one-dimensional Fermi liquid
(� ¼ 1), they also show discrepancy from the EFTA pre-
diction. Specifically, the measured exponents at filling
factors � ¼ 1=3, 2=5, and 3=7 are �2:7, 2.3, and 2.1,
respectively [4–7], to be compared with the EFTA predic-
tion of 3.0; furthermore, the experimental exponent varies
continuously with the filling factor, and thus is not deter-
mined solely by the quantized Hall conductance.
A number of theoretical papers have addressed this

inconsistency [7–20]. Some of these suggest that the dis-
agreement is due to edge reconstruction, which produces
several counter-propagating edge modes (for which the
exponent is not universal) [15–18,21], while some propose
that the inconsistency persists even in the absence of edge
reconstruction, thus pointing to a more fundamental defi-
ciency of the EFTA [13,19]. A resolution of this issue is
important in its own right, and also has obvious implica-
tions for the program of determining the nature of a bulk
FQH state by probing its edge [22]; such a program pre-
sumes the existence of a unique relationship between the
bulk and the edge physics and hence the universality of the
latter.
Exact diagonalization studies often provide an unpreju-

diced, reliable, and decisive tool for testing ideas in the
field of the FQH effect. For the edge physics, however, it
has not been clear if the discrepancy between the finite
system results and the EFTA is intrinsic or a finite size
artifact; finite size corrections are more severe for the
edge physics [20] because of a power law decay of corre-
lations, in contrast to the Gaussian decay in the bulk.
Unfortunately, the dimension of the Hilbert space grows
exponentially with the number of electrons, making it
impossible to increase the system sizes significantly in
exact diagonalization studies.
In this Letter we report on microscopic tests of the EFTA

by diagonalizing the Coulomb Hamiltonian in a truncated
space of composite fermion (CF) edge excitations, which
makes it possible to investigate much larger systems than
before. Specifically, we consider the edge excitations of the
1=3 FQH state in the disk geometry, and the truncated
space contains all states of the form
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�M
� ¼Y

j<k

ðzj � zkÞ2�M�
� ; M¼M� þNðN� 1Þ; (2)

where zj ¼ xj � iyj denotes the electron coordinates as a

complex number, M is the total angular momentum of the

sate, and�M�
� are all lowest Landau level states (labeled by

� ¼ 1; � � � ; D�) at total angular momentum M�. The di-
mension of this basis space is much smaller than the full
dimension of the lowest Landau level states atM, allowing
investigation of systems with as many as 45 particles. The
restriction to this basis is equivalent to restricting compos-
ite fermions [23] to their lowest � level (also known as
composite fermion Landau level). More accurate results
can be obtained by systematically enlarging the space of
states in the standard manner [24] to include CF excitations

to higher � levels (i.e., by including in the set f�M�
� g states

occupying higher Landau levels, constructing f�M�
� g as in

Eq. (1), and projecting them onto the lowest Landau level),
but that will not be necessary for our present purposes. The
lowest-�-level approximation for composite fermions is
known to be excellent, and we have also confirmed its
accuracy explicitly for edge excitations for systems with
six and seven particles, for which exact results are avail-
able, both with and without a confinement potential. Also,
�M

� are the only states that survive if we add to the
Coulomb interaction an appropriate infinitely strong
short-range interaction that annihilates states containing
electronic pairs with angular momenta equal to unity; our
results below are exact for this model. Therefore, our
truncated Hilbert space ought to capture the topological
nature, if it exists, of the edge physics. We believe that this
model actually gives the best chance for universal behav-
ior; admixture with higher � levels can only spoil it [13].

We consider a system of two dimensional electron gas in
disk geometry. The neutralizing background has uniformly
distributed positive charge contained in a disk�N of radius

RN ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2N=�

p
for a system ofN particles at filling factor �;

the positively charged disk is separated by a distance d
from the electron disk (we quote lengths in units of the

magnetic length l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
). The electrons are approxi-

mately confined to the same radius because of charge
neutrality in the interior. This system is modeled by the
following realistic Hamiltonian:

H ¼ EK þ Vee þ Veb þ Vbb; (3)

where the terms on the right-hand side represent the
kinetic, electron-electron, electron-background, and
background-background Coulomb interaction energies, re-
spectively. At large magnetic fields only the lowest Landau
level states are occupied; hence, the kinetic energy @!c=2
(where !c � eB=mbc is the cylcotron frequency) is a
constant and will not be considered explicitly.

The wave functions �M
� are in general not orthogonal,

and we use the method of composite-fermion diagonaliza-
tion (CFD) [24] to orthogonalize them by the Gram-
Schmidt procedure, evaluate the Hamiltonian matrix ele-
ments, and diagonalize it to obtain the eigenvalues and

eigenvectors. All matrix elements and scalar products
needed for this purpose are evaluated by the Monte Carlo
method, as explained elsewhere in the literature [24].
While sufficiently accurate energy spectrum requires
�10–20 million Monte Carlo iterations, the spectral
weights require �200 million iterations for each eigen-
state. These numbers do not vary significantly with N, but
the computation time increases exponentially with N and
�M, limiting our study to systems withN ¼ 45 for energy,
and to N ¼ 27 for spectral weights; the energies were
calculated for �M ¼ 1–8 and the spectral weights for
�M ¼ 1–4.
Using the CF diagonalization procedure, we compute

the spectra of edge excitations of the 1=3 state, shown in
Fig. 1, for several parameters in the range N ¼ 9–45, d ¼
0–2:5, and �M ¼ 0–8. Our large system calculations con-
firm an earlier study [15] that for d larger than a critical
separation of approximately 1.5–2.0 magnetic lengths the
FQH edge undergoes a reconstruction, resulting in multiple
counter propagating edge modes for which the EFTA edge
exponent is not quantized, thus providing a possible expla-
nation for the observed nonuniversal behavior. However,
the important question remains whether universality occurs
in the absence edge reconstruction, as is the case for
sufficiently small d.
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FIG. 1 (color online). Energy spectrum for the edge excitations
of � ¼ 1=3 for N ¼ 9, 27, 45 particles at electron-background
separations in the range d ¼ 0:0 and 2.5. Blue dots indicate the
energies obtained by CF diagonalization, whereas the adjacent
red triangles (shifted along the x axis for clarity) show the
bosonic spectra (see text for explanation). All energies are
quoted in units of e2=�l, and measured relative to the energy
of the ground state at �M ¼ 0. �M is the angular momentum of
the excited state, l is the magnetic length, and � is the dielectric
constant of the background semiconductor.
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To address this issue we follow the pioneering work of
Palacios and MacDonald [9] to test the validity of Eq. (1),
upon which the notion of universality rests. Specifically,
we compare certain matrix elements of the electron field
operator, computed with the help of the microscopic CFD
wave functions, with the predictions of the bosonized form
in Eq. (1). We also consider d greater than the critical
separation for completeness; here, we assume that the
ground state remains at �M ¼ 0, which can be arranged
by adding an ad hoc angular momentum dependent single
particle energy term that strongly penalizes the edge ex-
citations responsible for edge reconstruction, but does not
change either the eigenfunctions or the energy ordering of
states at a given �M. (This can be accomplished by adding
an appropriate parabolic confinement term which adds to
the total energy a term proportional to the total angular
momentum.)

The so-called ‘‘spectral weights’’ are defined by

Cfnlg ¼ hfnlgjĉ yð�Þj0i=h0jĉ yð�Þj0i; (4)

where jfnlgi represents the bosonic state with occupation

fnlg, j0i is the vacuum state with zero bosons, and ĉ yð�Þ is
the electron creation operator at position � along the edge
circle. Here l denotes the single boson angular momentum;
the total angular momentum is denoted by �M ¼ P

llnl
and the total energy by �E ¼ P

lnl�l, with �l being the
energy of a single boson at angular momentum l. With

the help of ĉ yð�Þ / ei
ffiffiffi
m

p
�̂ð�Þ ¼ ffiffiffi

z
p

ei
ffiffiffi
m

p
�̂þð�Þei

ffiffiffi
m

p
�̂�ð�Þ,

�̂þð�Þ ¼ �P
l>0ð1=

ffiffi
l

p Þayl eil� ¼ �̂y
�ð�Þ, it is straightfor-

ward to obtain the predictions for the spectral weights:

jCfnlgj2 ¼
mn1þn2þ���

n1!n2! � � � 1n12n2 � � � : (5)

We note that the denominator in Eq. (4) eliminates the
unknown normalization constant

ffiffiffi
z

p
.

In order to obtain the spectral weights from our elec-
tronic spectra, it is natural to identify the vacuum state j0i
with the ground state of interacting electrons at � ¼ 1=m,
denoted by j�N

0 i, and the field operator has the standard

meaning of ĉ yð�Þ ¼ P
l�

�
l ð�Þcyl � P

lc
y
l ð�Þ, where cyl

and cl are creation and annihilation operators for an elec-
tron in the angular momentum l state. The denominator of
Eq. (4) corresponds to

h0jĉ yð�Þj0i ¼ h�Nþ1
0 jĉ y

L0
ð�Þj�N

0 iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Nþ1

0 j�Nþ1
0 ih�N

0 jĉ L0
ð�Þĉ y

L0
ð�Þj�N

0 i
q ;

where j�N
0 i is the ground state ofN interacting electrons at

� ¼ 1=m, and L0 ¼ mN. The numerator is similarly de-
fined as

hfnlgjĉ yð�Þj0i ¼ h�Nþ1
fnlg jĉ

y
Lð�Þj�N

0 iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Nþ1

fnlg j�Nþ1
fnlg ih�N

0 jĉ Lð�Þĉ y
Lð�Þj�N

0 i
q :

Here, we have

ĉ y
Lj�N

0 i ¼ N LA½zLNþ1e
�jzNþ1j2=4�N

0 ðz1; z2 . . . ; zNÞ�;

where A is the antisymmetrization operator, N L is the
normalization constant, and L � L0 þ �M is the angular
momentum of added electron.
The wave function �Nþ1

fnlg , the electronic counterpart of

the bosonic state jfnlgi, represents an excited state at total
angular momentum M ¼ �MþmNðN þ 1Þ=2, which
should also be related to the total angular momentum of
the N particle ground state through M ¼ LþmNðN �
1Þ=2. At each �M, there are in general many eigenstates.
Following Ref. [15] we identify �l, the energy of a single
boson with angular momentum l, with the lowest energy at
l ¼ �M in the calculated spectrum. Using the equations
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FIG. 2 (color online). N dependence of spectral weights (SW)
jCfnlgj2 for several states fnlg, indicated on each panel, and

various separations d (quoted in units of the magnetic length
in the f0100g panel). The EFTA prediction from Eq. (1) is
indicated by a star on the y axis, with the value also given on
each panel. The points on the y axis are determined by a
quadratic fit to the finite N results.
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P
llnl ¼ �M and Efnlg ¼

P
lnl�l, the energies of the all

bosonic states fnlg can now be obtained (see Fig. 1), which
can then be identified with the corresponding electronic
states. We note that in the lowest � level subspace, the
numbers of electronic and bosonic states are equal at each
�M, so a one-to-one correspondence between the two sets
of states can be established from their energy ordering. For
small systems (for example, N ¼ 9 in Fig. 1), the CFD
spectra and the bosonic spectra are very close to each other,
which explicitly confirms the interpretation of the lowest
branch as the single boson branch. The agreement between
the electronic and bosonic spectra becomes less accurate
with increasingN or�M, but still remains adequate for the
low energy states, which will be our focus. (The higher
energy states of the spectra shown in Fig. 1 mix with higher
� level excitations of composite fermions, not considered
in our model.)

Figure 2 shows the squared spectral weights for different
excited states as a function of N and d. A quadratic fit
extrapolates the result to the thermodynamic limit 1=N ¼
0. The EFTA predictions from Eq. (1) are also shown in
each panel. These plots demonstrate that the spectral
weights are nonuniversal: they in general depend on d
and do not extrapolate to the EFTA value. For the f1000g
excitation the thermodynamic result agrees with the pre-
dicted result of 3.0 for all d, but the agreement is not
meaningful because in this case our truncated space con-
tains a single (center-of-mass) excitation, the wave func-
tion for which is independent of interactions (within our
model). For many other cases, including single boson
states such as f0100g and f0010g, the deviation from the
EFTA value is significant.

Another model for edge confinement [15] restricts the
single particle angular momentum to a maximum value of
lmax ¼ 3ðN � 1Þ þ l0 (where l0 is a small integer), which
may be a reasonable approximation for the sharp confine-
ment produced by cleaved edge overgrowth [7]. However,
angular momentum conservation shows that in this model
the actual spectral functions identically vanish for �M>
l0, resulting in an even more substantial disagreement with
the EFTA.

In summary, our studies of a realistic model of the 1=m
FQH edge show that while the energy spectrum is fairly
well described in terms of chiral bosons, the ansatz in
Eq. (1) is not strictly valid even for an unreconstructed
edge in the thermodynamic limit, raising the possibility
that the edge physics of the 1=m FQH state is intrinsically
nontopological. Similar considerations are likely to apply
for other FQH states as well, which are believed to have
more complex edges. The problem of how the actual
electron field operator is related to the bosonic field opera-
tor remains unresolved, however. Following Ref. [19] one
may abandon the antisymmetry requirement and try an

expression of the type ĉ ðxÞ � e�i
ffiffiffi
�

p
�̂ðxÞ with arbitrary �;

we have found that no single value of � gives a satisfactory
description of all spectral weights obtained from numerical

diagonalization. A nonlocal relation between the electron
and boson operators [13] is another possibility, not ex-
plored here.
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