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We present the first experimental measurement of the geometric critical exponent � associated with the

percolation probability, the probability a metallic filler belongs to the conducting network, of an electrical

composite. The technique employs conducting-tip atomic force microscopy to obtain a conducting areal

density, and is demonstrated on polyimide nanocomposites containing different concentrations of carbon

nanofibers. We find � � 1 and t (the exponent for bulk conductivity)�3. These values are consistent with

the predictions for the Bethe lattice and larger than the values predicted in the 3D lattice percolation

model. Hence, this electrical composite likely belongs to the same universality class as the Bethe lattice.

The ability to measure geometric and transport critical exponents on the same material is critical to

drawing this conclusion.
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When a metallic phase is randomly dispersed in an
insulating matrix, the resulting composite typically has a
bulk electrical conductivity well described by percolation
theory. Above the critical volume fraction (pc) of the
metallic phase, the bulk conductivity �ðpÞ has been shown
to take the form [1]

�ðpÞ / ðp� pcÞt ðp > pcÞ; (1)

where p is the volume fraction of the conducting phase, pc

is the percolation threshold, and t is the critical exponent.
As with many second order phase transitions, the critical
exponents associated with percolation theory, including t,
are predicted to have universal values dependent only on
the dimensionality of the system. In a 3D composite, the
lattice percolation model predicts the critical exponent t to
take a value of�2 [1]. It has been experimentally observed
that the value of t deviates from this predicted value in
many 3D percolation systems [2–6]. Theoretical explana-
tions for the observed nonuniversal values of t focus on the
contacts between adjacent particles. Explanations include
low conductance bonds between conducting particles [7,8]
and an extension of this idea to include tunneling conduc-
tion between nearest neighbor particles [9]. While these
theories are able to explain nonuniversal t values, they
cannot conclude the broad applicability of lattice percola-
tion theory to 3D random network composites based on the
result of t alone. This remains an unresolved problem of
general interest in statistical physics.

In addition to t, percolation theory predicts other expo-
nents, �, �, and � associated with geometric properties of
the conducting network: � is associated with the percola-
tion probability �1ðpÞ, the probability a conducting parti-
cle belongs to the infinite cluster or conducting network; �
is associated with the correlation length �, the linear
dimension of the largest metallic cluster not contributing
to electrical transport; � is associated with the number of

finite clusters in the system [10]. Experimental determina-
tion of these properties in electrical composites requires
obtaining microscopic knowledge of the conducting net-
work, as opposed to the bulk transport measurement
needed to find t. A microscopic measurement would need
the spatial resolution provided by microscopy techniques
such as scanning electron microscopy (SEM), atomic force
microscopy (AFM), and scanning tunneling microscopy.
To the best of our knowledge, �, �, or � has never been
measured experimentally in an electrical composite. A
measurement of any one of these critical exponents
combined with an independent measurement of t should
provide more in-depth insight into the cause of the non-
universal behavior of t.
In this Letter, we report a direct experimental measure-

ment of the percolation probability and its associated criti-
cal exponent � in carbon nanofiber loaded polyimide
nanocomposites. The measurement employs the spatial
resolution of the AFM by analyzing real-space conduc-
tance maps acquired using conducting-tip atomic force
microscopy (CAFM). The development of CAFM and
related electric force microscopy (EFM) has enabled the
electrical properties of composite materials to be studied
on the microscopic level to complement bulk transport
measurements. The focus of past work in this area has
included CAFM proof of concept studies [11,12] as well
as EFM [13] and CAFM [14] studies of the fractal prop-
erties of a two phase carbon black composite. Here we use
CAFM to image the conducting area (At) of a nanocom-
posite made of conducting multiwalled carbon nanofibers
(CNF) dispersed in an insulating polyimide (CP2) matrix.
The carbon nanofiber volume fractions in these samples are
all above the percolation threshold. These nanocomposites
exhibit a nonuniversal conductivity exponent t of�3 [15].
Details of the nanocomposite synthesis and characteriza-
tion have been reported in Refs. [15–17].
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To obtain �1ðpÞ we employ a well-established identity
of stereology known as the principle of Delesse (PoD). The
PoD states that the areal density (aA ¼ A1=Atotal) of a
phase in a random, isotropic, multiphase composite is
equal to the volume density (vV ¼ V1=Vtotal) of the phase
assuming the measured area is representative of the bulk
[18], where A1 (V1) are the area (volume) of the phase in
the total measurement area, Atotal (volume, Vtotal). This
relationship is statistical so a good estimate of the volume
density of a phase requires the average of many indepen-
dent 2D areal densities. The PoD has been employed for
many years analyzing optical images of biological speci-
mens, but has not been widely applied in AFM image
analysis [19]. In the case of CAFM imaging of an electrical
composite, the conducting area in the image divided by the
total scan area, At=L

2, tells us the areal density of the
conducting network. If the total volume fraction of the
conducting filler is known, then the ratio of the conducting
areal density over the total volume fraction of the filler
represents the fraction of the filler that is part of the
conducting network, i.e., �1ðpÞ.

�1ðpÞ / ðAt=L
2Þ=p ¼ Cðp� pcÞ� (2)

C is a constant. The lattice model predicts the value of � to
be � 0:4 in 3D [10].

In order for this composite material to be a candidate for
the PoD analysis, it must be isotropic and have a uniform
CNF dispersion. SEM and x-ray scattering measurements
on these samples have turned up no detectable bulk anisot-
ropy (i.e., no preferred CNF alignment). Therefore, we
believe the bulk material is isotropic. Cross-sectional
SEM images show uniform dispersion except for a
polymer-rich surface layer. The amount of CNFs in the
surface layer depends on whether the surface is exposed to
air (top) or in contact with a glass substrate (bottom) during
the synthesis process. The transition from surface to the
bulk is sharp, within the resolution of the SEM. Prior to the
CAFM measurements, the samples are removed from the
glass substrate to create free-standing films and then etched
in an oxygen plasma to remove �60 nm of the surface
layer. Without such a treatment, the surfaces studied via
CAFM would not be bulk representative, thus making the
PoD analysis inapplicable [18]. After plasma etching,�ðpÞ
measured at different areas of each composite showed
statistically similar values, further corroborating that nano-
tube dispersion is uniform across an 8� 8 mm2 sample
[17]. Later we will show CAFM results suggesting that the
surfaces produced by the oxygen plasma are bulk repre-
sentative. The films we study are all over 100 �m thick
while the average length of a CNF is about 8 �m and the
average diameter is 80 nm. Any conducting pathways
found in the material must be a part of a percolation net-
work, as opposed to a single CNF spanning the entire
thickness of the composites.

After the plasma treatment, a gold electrode was depos-
ited via electron beam evaporation to cover one side of

each sample. The CAFM measurements were performed
with a Digital Instruments (DI) Dimension 3100 AFMwith
the extended TUNA module. Further details of the mea-
surement setup can be found in Ref. [17]. CAFM scans
over a 20� 20 �m2 area were taken at 24 randomly
selected locations for each sample. A schematic of our
CAFM measurement setup is shown in Fig. 1. Scan loca-
tions were selected randomly instead of pinning the origin
of each scan to a conducting area as done in Refs. [13,14].
Therefore, the sum of the 24 scans should be statistically
identical to a single scan with a square area of roughly
100 �m on the side. This is key because spurious results
for At=L

2 can arise if the window size is less than the
correlation length of the composite [13,14]. A study of a
multiwalled carbon nanotube–epoxy composite found an
estimate of�250 nm for the correlation length at loadings
roughly 10 times higher than the percolation threshold of
the material [20]. Even if the correlation length of this
material is tens of microns near the percolation threshold,
our measurement should still be sampling a homogeneous
conducting network [21].
Example CAFM scans of composites with four different

CNF loading are shown in Fig. 2. The bias voltage was 20,
50, 100, and 200 mV for the 0.035, 0.014, 0.007, and
0.0035 vol fractions, respectively. These voltages were
set to maximize the current signal without pegging the
CAFM current preamp. As shown previously [17], local
current-voltage measurements on the conducting areas
exhibit linear behavior, implying the different bias voltages
are easily scalable to compare samples with different CNF
loadings. The images depict spatial variation of current at a
fixed tip-back contact bias. As is evident, most of the
sample is not conducting (dark in the images), but isolated
conducting areas do exist (bright in the images). Note that
in order to detect a current signal, the AFM tip must
contact a CNF that is in the conducting network because
current must flow from the back Au contact through the
sample to the tip. An isolated CNF in the insulating matrix
will not produce a current signal. At was calculated by
summing each pixel of a current map with a current signal
above the 180 pA noise floor. The pixel count was then
converted to an area by multiplying the total scan area
divided by the total number of pixels in the scan. Scans
shown were chosen that best represent the average At

FIG. 1 (color online). Schematic of our CAFM measurement
setup. A voltage bias is applied to the uniform bottom Au
electrode while the CAFM tip is connected to ground through
the TUNA current preamp. Multiple scans of size of L ¼ 20 �m
are taken at random locations for each CNF loading. Typical
sample thickness is 150 �m with lateral dimensions of 8 mm.
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measured for each loading. It is clear that At changes with
the CNF concentration.

It was mentioned earlier that the CAFM measurements
also facilitated a means to check whether the surfaces
being measured are bulk-representative. On as-made
0.035 vol fraction materials, the At values for the surface
exposed to air during synthesis and that in contact with
glass during synthesis are 3:14� 1:33 �m2 and 0:202�
0:114 �m2 for 20� 20 �m2 scans, respectively. The dif-
ference is likely caused by the different surface energies
experienced by the polyimide and CNFs at the two inter-
faces. After the plasma treatment, At measurements on
both surfaces give statistically identical results; 21:9�
3:77 �m2 on the glass-interface side and 21:6�
5:57 �m2 on the air-interface side. These results strongly
suggest that the plasma treatment removes polymer-rich
skin layers and produces bulk-representative surfaces.

As shown in Eq. (2), once At has been measured for a
series of scans, �1ðpÞ can be estimated by dividing At=L

2

by p. Figure 3 shows the calculated �1ðpÞ for all six
CNF volume fractions. Using Eq. (2) to fit the data, we
found the following values for � and pc: 1:1� 0:3 and
0:002� :002 vol fraction. The inset of Fig. 3 shows the
�ðpÞ of each CNF loading. Using Eq. (1), we can inde-
pendently determine pc as well as verify the nonuniversal
value of t seen in previous studies of this composite
material [15]. The best fit from �ðpÞ results gives a pc

value of 0:001� 0:001 vol fraction and a t value of 3:1�
0:4. It is important to point out that the two measurements
probe different properties in the nanocomposites; as CNF
loading increases, �1ðpÞ measures the increase in the

conducting network volume without regard to the conduc-
tivity amplitude, while �ðpÞ measures how the average
bulk conductivity increases. The fact that the values of pc

obtained from these two independent measurements agree
within the uncertainty of the measurements gives us con-
fidence that we have verified the percolation threshold of
our composite system by the CAFM measurement. Hence,
our At analysis is truly giving us the �1ðpÞ behavior of
these nanocomposites. The small pc value is due to the
high aspect ratio (�100) of the CNF fillers [22], and will be
discussed further below within the context of the Bethe
lattice. As given in the supplementary material [21], the
measured �1ðpÞ values are too large by a constant multi-
plicative factor due to AFM tip convolution and image
pixilation. However, this multiplicative factor does not
affect the resultant values of pc or � obtained from the
CAFM measurement.
It is clear that both critical exponents measured in our

CNF composite (t � 3, � � 1) do not agree with the
values predicted in the 3D lattice percolation model (t �
2, � � 0:4). The results bring into question the applicabil-
ity, in our nanocomposite, of the contact (tunneling) mod-
els that were proposed to explain the nonuniversal values
of t. This hinges upon the fact that while models such as the
tunneling model suggest nonuniversal values for t, they
predict the geometric critical exponents such as � should
still be the same as that predicted by the lattice percolation
model [23]. Since the � value we obtain for the CNF
nanocomposites does not agree with the value predicted
by the lattice model, the contact (tunneling) models are not
applicable to this system. In addition, the fractal dimension
Df is related to the geometric critical exponents � and �

via the scaling law Df ¼ d� �=� [10], where d is the

Euclidean spatial dimension. The lattice model predicts a
Df � 2:5 with � � 0:8. Small angle x-ray scattering re-

FIG. 3 (color online). The percolation probability as a function
of CNF volume fraction for the CNF—polymer composite. The
inset shows the bulk conductivity of the composite as a function
of CNF volume fraction. The red line in both curves is a best fit
to the data using the functional form y ¼ Aðp� pcÞz. The
critical exponent is 1:1� 0:3 for �1ðpÞ and 3:1� 0:4 for
�ðpÞ. The pc value is 0:002� 0:001 vol fraction determined
from �1ðpÞ and 0:001� 0:001 vol fraction from �ðpÞ.

FIG. 2 (color online). Example CAFM scans of (a) 0.035,
(b) 0.014, (c) 0.007, and (d) 0.0035 vol fraction CNF composites.
Bias voltages were set at 20, 50, 100, and 200 mV for (a), (b),
(c), and (d), respectively. In order to keep the current scale the
same for all scans, the current magnitude of each pixel has been
increased by a factor of 2, 10, and 20 for (b), (c), and (d),
respectively. The white scale bar represents 4 �m.
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sults indicate Df � 2 and, hence, � � 1 for our composite

material [15]. Both are also different from the prediction of
the lattice model. We are left to consider if this CNF-
polyimide nanocomposite belongs to a different universal-
ity class than the 3D lattice percolation model.

The Bethe lattice (or a Cayley tree) is an endless branch-
ing network with no close loops [1,24]. This model is
exactly solvable due to its unique topology, and has been
applied to explain the gelation process. Curiously, � ¼ 1
and t ¼ 3 for the Bethe lattice, as we measured experi-
mentally. To map our system to a Cayley tree, the nodes
would correspond to CNFs while the bonds to CNF-CNF
contacts. The number of bonds per node is z, the coordi-
nation number. The high aspect ratio of CNFs results in
more contacts (bonds) per CNF (node). pc in the Bethe
lattice equals ðz� 1Þ�1. In our system, pc of 0.002 corre-
sponds to z � 500, which is large but of the same order as
the CNF aspect ratio. Thus, it appears that the electrical
conduction in the CNF-polymer nanocomposites behaves
similar to the Bethe lattice. However, it is not clear that
having no loops in the cluster is an accurate description of
the CNF network topology. Cross-sectional SEM images
of our nanocomposite [21] show an entangled CNF dis-
tribution, implying loops cannot be precluded. Perhaps due
to the stiffness of the CNFs and-or the high z value,
forward-propagating branches dominate, rendering the
loop contributions insignificant. While we cannot conclu-
sively say that the CNF nanocomposites form a Bethe
lattice, the agreement of the two critical exponents is
highly suggestive.

In summary, we present the first experimental measure-
ment of �1ðpÞ in an electrical composite. Our approach is
based on imaging conducting areas of bulk-representative
cross sections using CAFM and applying the principle of
Delesse. �1ðpÞ is a geometric property, and while theo-
retical models are able to explain the nonuniversal trans-
port critical exponent with varying contact resistances,
nonuniversal geometric critical exponents, such as �, can-
not be explained in the same way. We conclusively show
that, by measuring t and � on the same samples, CNF-
polyimide nanocomposites do not belong to the same
universality class as the 3D lattice percolation model.
Instead, their properties more closely resemble a Bethe
lattice. This conclusion could not have been made without
measuring both geometric and transport exponents. Thus,
our development of an experimental approach to obtain �
is critical. Our approach is clearly not limited to the
CNF-polyimide nanocomposite system. It would be very
interesting to investigate composites where the material
properties suggest the tunneling percolation model is ap-
plicable, e.g., carbon black composites [14] and some
granular metal composites [25]. It would also be informa-
tive to perform this measurement on systems with a t value
that appears to be in agreement with the lattice model.
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