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We use terahertz time-domain spectroscopy to study the transmission properties of metallic films per-

forated with aperture arrays having deterministic or stochastic fractal morphologies (‘‘plasmonic frac-

tals’’), and compare them with random aperture arrays. All of the measured plasmonic fractals show

transmission resonances and antiresonances at frequencies that correspond to prominent features in their

structure factors in k space. However, in sharp contrast to periodic aperture arrays, the resonant trans-

mission enhancement decreases with increasing array size. This property is explained using a density-

density correlation function, and is utilized for determining the underlying fractal dimensionality, Dð<2Þ.
Furthermore, a sum rule for the transmission resonances and antiresonances in plasmonic fractals relative

to the transmission of the corresponding random aperture arrays is obtained, and is shown to be universal.
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Light localization using periodic or disordered media
has been a topic of scientific interest for several decades,
and is considered to be a consequence of strong interfer-
ence of light in the underlying media [1–9]. For example,
by engineering the structural defects in photonic crystals,
intense light localization with very highQ can be observed
[4]. Also, by using randomly distributed strong light scat-
terers, Anderson localization of light can be induced with
confinement on a subwavelength scale [5–8]. The recent
emergence of fractal structures has also attracted signifi-
cant interest in the optical community because of the
possibility of obtaining light confinement. Fractal struc-
tures are unique in that they have a very high degree of self-
similarly (also referred to as ‘‘dilation symmetry’’); i.e.,
they are exactly or approximately similar to a part of
themselves [10]. Light scattering from objects with fractal
morphology such as colloidal aggregates, self-affine sur-
faces, and semicontinuous thin films has been extensively
studied to demonstrate the ability of obtaining intense light
localization [11–19]. However, a deeper understanding is
critical for developing novel devices and technologies
based on these optical self-similar structures.

We report terahertz (THz) transmission resonances from
several aperture arrays in metallic films exhibiting frac-
tal geometries, for both deterministic and stochastic
fractal morphologies. We refer to these self-similar metal
based structures exhibiting unique fractal characteristics
as ‘‘plasmonic fractals.’’ We found that transmission
resonances and antiresonances also form in these com-
plex structures, at frequencies that closely match promi-
nent features in their structure factor in k space [20].
However in contrast to periodic plasmonic lattices, where
the transmission resonances are accentuated and increase
with lattice size, the resonant transmission enhancement in
plasmonic fractals decreases with the structure size. This is
explained by a density-density correlation function, and is

used to further characterize the plasmonic fractals
morphology.
Fractal morphologies are characterized by a parameter

referred to as the fractal dimension, D, which is smaller
than the topological dimension, D� [10]. D is a statistical
quantity that gives an indication of how completely a
fractal structure appears to fill the available space. D is
typically calculated from the structure topography using
the following expression [21]:

N ¼ k0

�
Rg

a

�
D
; (1)

where N is the number of primary particles in the aggre-
gate, which is proportional to the mass (or filled ‘‘vol-
ume’’), Rg is a measure of the aggregate radius (or

gyration radius), a is the monomer radius, and k0 is a
proportionality constant of order unity.
Fractal structures can be generated using both determi-

nistic and stochastic approaches. The deterministic ap-
proach exhibits exact self-similarity; examples of such
structures include Sierpinski carpet, Vicsek fractal, hexa-
flake (HF), etc. [22,23]. In contrast, the stochastic approach
is used to generate fractal structures that exhibit statistical
self-similarity; examples include structures that are formed
by diffusion-limited aggregation (DLA), ballistic aggrega-
tion (BA), etc. [24–26]. The real and reciprocal space
representations of three fractal structures, namely, the
HF, BA, and DLA fractals used in our study, are shown
in Fig. 1. The stochastic fractal structures (BA and DLA)
were designed using an aggregation process in which the
nearest neighbor distance, d, and the aperture size were
preserved [27]. We used two sets of samples: one set
consisted of the plasmonic fractals, while the other set
consisted of randomly distributed holes (RHs) having the
same number of apertures as the corresponding fractal
structures. The three plasmonic fractals were fabricated
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on 75 �m thick freestanding stainless steel films, where
the dots were replaced with circular apertures having spac-
ing d ¼ 1:0 mm and radius a ¼ 300 �m. The structure
factor in k space was calculated using two-dimensional
Fourier transforms of the real space structures, and reveals
various reciprocal vectors (RVs). Figure 1(a) shows dis-

crete RVs (labeled FðiÞ), associated with the HF determi-
nistic fractal, which are similar to reciprocal lattice vectors
found in periodic structures. However the k-space repre-
sentation of the BA and DLA stochastic fractals [Figs. 1(b)
and 1(c), respectively] are characterized by continuous

concentric diffused streaks (labeled ~FðiÞ), which are similar
to features observed in the k-space representation of liquid
and amorphous materials [28].

We used standard THz time-domain spectroscopy to
measure the normalized THz electric field transmission,
tð�Þ, through these structures [27]. For measuring tð�Þ vs
Rg, a circular aperture having a controlled radius was

placed in front of the sample. Figure 2(a) shows tð�Þ
through a BA fractal compared to the spectrum, t0ð�Þ of
a corresponding RH sample, for three Rg’s. tð�Þ contain
three remarkable features: (i) even though the BA fractal
has no discrete RVs in k space, tð�Þ still shows resonantly

enhanced bands relative to t0ð�Þ; (ii) tð�Þ also exhibits
antiresonant reduction bands at higher corresponding fre-
quencies; (iii) surprisingly, with increasing Rg the resonant

transmission, tmax, decreases with respect to t0ð�Þ. Point
(iii) is counterintuitive because the number of apertures
that participate in forming the resonant transmission in-
creases with Rg and this leads to a more accentuated

transmission band in periodic hole arrays [29,30]. We
note that t0ð�Þ of the RH samples (Fig. 2) has slightly
different Rg than the corresponding fractal structures for

maintaining constant N. Figures 2(b) and 2(c) show tð�Þ of
the two other plasmonic fractals, namely, HF and DLA,
along with t0ð�Þ of the corresponding RH samples. tð�Þ
here exhibit trends similar to those observed in tð�Þ of the
BA sample, namely, a resonantly enhanced transmission
and a corresponding antiresonance reduction with respect
to t0ð�Þ. This shows that resonant transmission in plas-
monic fractals is universal, regardless of the type of fractal
morphology (deterministic or chaotic); this is similar to
resonant transmission through other aperture arrays having
periodic or quasiperiodic morphology [9,31].
We devised a method to obtain the fractal dimension-

ality, D, from the dependence of tð�Þ on Rg, as shown in

Fig. 3(a). Using RH samples, we previously demonstrated
that tð�Þ scales linearly with the number of sampled aper-
tures, N [31]. Thus, we can simplify Eq. (1) to obtain D
from the slope of the following functional dependence:

D /
�

logðNÞ
logðRg=aÞ

�
/
�

logðt�o
Þ

logðRg=aÞ
�
: (2)

Here t�o
is the transmission value at the isosbestic fre-

quency, �o, at which tð�Þ of the fractal array and corre-
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FIG. 2 (color online). Normalized THz transmittance spectra,
tð�Þ, for the plasmonic fractals shown in Fig. 1 [lighter (red)
solid line], compared to t0ð�Þ of the corresponding RH [darker
(blue) solid line] aperture arrays. (a) tð�Þ and t0ð�Þ of BA fractal
and respective RH array at three different gyration radii (Rg).

The isosbestic frequency �0 ¼ 0:33 THz is assigned by a verti-
cal broken line. (b) and (c) tð�Þ and t0ð�Þ of HF and DLA
plasmonic fractals for Rg ¼ 22 mm and 35 mm, respectively.
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FIG. 1 (color online). The real (left panels) and reciprocal
space (right panels) representations of deterministic (a) and
stochastic (b) and (c) plasmonic fractals used in our study, where
the black dots correspond to the location of apertures having
fixed average spacing d ¼ 1:0 mm and aperture radius a ¼
300 �m. (a) HF fractal, (b) BA, and (c) DLA fractal. The
discrete reciprocal vectors (RVs) in k space, FðiÞ in (a), and
diffused ~FðiÞ in (b) and (c) are assigned.
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sponding RH array cross each other [see Fig. 2(a)]; there-
fore, t�o

is solely determined by N, and does not incorpo-

rate the resonance effect induced by the underlying
structure factor. We note that �o mainly depends on the
aperture cutoff properties (its radius, a), and is therefore
independent of Rg [31]. In Fig. 3(a) we plot logðt�o

Þ vs
logðRg=aÞ for the three plasmonic fractals shown in Fig. 1.

From the resulting slopes we obtain the followingD values
using Eq. (2): DHF ¼ 1:76, DBA ¼ 1:87, and DDLA ¼
1:59. These values are in excellent agreement with D
values predicted by the theory, namely, DHF ¼ 1:77,
DBA ¼ 1:88, and DDLA ¼ 1:61 [22–27].

The unusual resonant enhancement property in plas-
monic fractals, where tmax decreases with increasing Rg

[Fig. 2(a)], may be explained using the density-density
correlation function, pðr; r0Þ, and its Fourier transform,
which is the essence of the structure factor that determines
the transmission properties [21]. Qualitatively, pðr; r0Þ cor-
responds to the probability, p, of finding another monomer
at point r0 if there is a monomer at point r. This function
can be reformulated to depend only on the radius vector
r0-r, namely, pðr0-rÞ. Since the aperture nearest neighbor
distance, d, for the fractal structures is fixed by the fabri-
cation process, we expect a maximum in pðr0-rÞ at jr0-rj ¼
d. This generates a maximum in the structure factor in the

form of a ring in k space at a radius k ¼ 2�=d [see
Figs. 1(b) and 1(c) for the stochastic fractals), which
determines the transmission peak, tmax, that occurs at
�max ¼ c2�=d. Therefore, tmax is proportional to the
probability p at jr0-rj ¼ d, which, in turn, is determined
by the number of aperture pairs, Np, within the fabricated

structure. Since d is fixed, then Np is proportional to N

within the structure. For fractals, this probability depends
on the structure size (or Rg), because N does not grow with

Rg according to the geometrical dimension, D�, but rather,
N grows with Rg according to the fractal dimensionality,D

[Eq. (1)]. Since the aperture radius is also fixed in the
fabricated arrays, the probability of finding an aperture
within the radius Rg in the fractals may be obtained by

the ratio, P, of the area covered by the apertures (AFrac) to
the entire area (ATotal):

P ¼ AFrac

ATotal

¼ N�a2

�R2
g

: (3)

Since N / ðRg=aÞD [Eq. (1)], we can simplify Eq. (3) to

read

P /
�
Rg

a

�
D�2

: (4)

Equation (4) shows that P (and consequently tmax) de-
creases with Rg because D< 2 for two-dimensional frac-

tals; this is evident in the data [Fig. 2(a)]. In Fig. 3(b) we
plot the experimental enhancement factor, tmax=t0, vs Rg

for the BA fractal on a logarithmical scale, and fit the data
with a straight line having the slope of D� 2 [Eq. (4)],
where the value D is directly obtained from Fig. 3(a). The
good agreement between the data and fit validates our
approach, and explains the curious decrease of tmax with
Rg, which is unique for fractal structures.

Another observation from the spectra shown in Fig. 2 is
that tð�Þ for the plasmonic fractals are modulated around
t0ð�Þ of the corresponding RH arrays. For the stochastic
fractals tð�Þ are enhanced at resonant frequencies that

correspond to the diffused RVs ( ~FðiÞ) seen in the k-space
representation of Figs. 1(b) and 1(c), and are simulta-
neously suppressed at higher frequencies. This is more
clearly illustrated by the shaded (yellow) regions in the
non-normalized transmission spectra, Tð�Þ, for the BA and
RH arrays shown in Fig. 4(a). In the Fig. 4(a) inset, we plot
the ratio, f, of the area under the Tð�Þ spectra for the BA
array to that of the RH array, as a function of Rg; f

fluctuates �0:96. We found that f� 1:0 for all three
plasmonic fractals. To understand this phenomenon we
analyzed the structure factor associated with all three
plasmonic fractals and corresponding RH arrays [31] in
greater detail by obtaining the relative scattering spectral

density, �rel
~FðiÞð�Þ, which is the Fourier transform of the

density-density correlation function, pðr; r0Þ. To calculate
this function, we numerically integrated the amplitude of

the Fourier components [�~FðiÞðkÞ] over the azimuthal
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FIG. 3 (color online). (a) Fractal dimensionality (D) of the
three fractal structures shown in Fig. 1 as extracted from the THz
transmittance value, t�o

at the isosbestic frequency (�0 ¼
0:33 THz), which is plotted vs the gyration radius (Rg). The

obtained D values are given. (b) The ratio of resonantly en-
hanced transmittance maximum, tmax of the BA plasmonic
fractal and t0ð�maxÞ of the corresponding RH array, plotted vs
Rg. The resulting slope of �0:13 is consistent with the model

calculation and DBA extracted in (a).

PRL 102, 113901 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 MARCH 2009

113901-3



angle (or ring) in k-space representation, as a function of
jkj (or the corresponding frequency, � ¼ ck) for the plas-

monic fractal, and normalized it by �0
~FðiÞðkÞ of the corre-

sponding RH arrays that was calculated the same way. The

spectral density �rel
~FðiÞð�Þ obtained in this manner is

shown for the BA fractal in Fig. 4(b). Surprisingly, we
found that the scattering spectral density for the plasmonic
fractal is modulated around that of the RH arrays, thus
keeping their integrals fixed, similar to their respective
transmission spectra. This ‘‘sum rule’’ is consistent with
the fabrication process; i.e., if the number of apertures in
the fractal and RH structures is kept the same, then the
integrated Fourier amplitude of the two structure factors
should be exactly equal. Since the resonant transmission
properties are determined by the structure factor, the reso-
nant enhancement and related antiresonance suppression in
tð�Þ with respect to t0ð�Þ are inherent to the diffraction
process, requiring a sum rule that leaves their integrated
transmission constant, as seen in the data.
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FIG. 4 (color online). Conservation of the integrated THz
transmission spectra through the plasmonic fractals. (a) Non-
normalized transmission spectra, Tð�Þ, through BA plasmonic
fractal [darker (blue) line] and corresponding RH array structure
[lighter (red) line]. The shaded (yellow) regions denote the
respective enhanced and suppressed transmission regions in
the fractal Tð�Þ relative to that of the RH array. Inset: the ratio
of area under the curve, ABA=ARH, plotted vs the gyration radius
(Rg) for the BA fractal array. (b) The relative scattering spectral

density, �relF
ðiÞð�Þ (see text for definition), of the BA fractal

[darker (blue) line], compared to that of the corresponding RH
array [lighter (red) line]. The existence of a sum rule for
�relF

ðiÞð�Þ integral is evident.
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