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We show that, in general, a spacetime having a quantum group symmetry has also a scale-dependent

fractal dimension which deviates from its classical value at short scales, a phenomenon that resembles

what is observed in some approaches to quantum gravity. In particular, we analyze the cases of a quantum

sphere and of �-Minkowski spacetime, the latter being relevant in the context of quantum gravity.
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In the quest for new physics at the Planck scale, the idea
that spacetime might become noncommutative has gained
a lot of attention, in particular, for its potential phenome-
nological implications [1]. Whether such an idea is sup-
posed to be taken as a starting point for the construction of
a quantum theory of gravity (see, for example, [2]) or can
be derived from it (for example, [3]), there are several
reasons why it could play a role at the Planck scale.
Somehow postponing the issue of a more complete and
fundamental theory, most of the effort in the literature has
gone into the study of noncommutative versions of flat
spacetime, which naively might be thought of as a ground
state of the full theory of quantum gravity.

On the other hand, constructive approaches to quantum
gravity, such as causal dynamical triangulations (CDT) [4]
and the exact renormalization group (ERG) [5], which
make no use of postulated new physics, have something
interesting to say about Planck scale properties of space-
time. It is somehow surprising to see that apparently very
different approaches give rise to very similar results, as is
the case for the spectral dimension of spacetime: Both in
CDT [6] and in ERG [7] evidence has been given for the
emergence of a (ground state) spacetime with fractal prop-
erties such as the effective (spectral) dimension ds vary-
ing from a classical value ds ¼ 4 at large scales down to
ds ¼ 2 at short scales, a result which is suggestive of how
gravity might cure its own ultraviolet behavior via a dy-
namical dimensional reduction. It is a legitimate and inter-
esting question to ask whether such a fractal nature of
spacetime at short scales is compatible with the expecta-
tion of some sort of noncommutativity.

An appealing realization of noncommutativity is that in
which spacetime remains maximally symmetric but the Lie
group of symmetries is deformed into a quantum group (as
in [8]), a deformation also favored by general arguments on
the possible nonlocality of a final quantum theory of grav-
ity [9] and which constitutes a solid realization of the so-
called doubly special relativity [10,11]. Research in this
area is still at an early stage, and a complete formulation of
quantum field theory based on a quantum group symmetry
is still lacking, but some proposals have been put forward
for the construction of the corresponding Fock space (see,

for example, [12] and references therein). Here we con-
sider two particular examples, the quantum sphere and
�-Minkowski spacetime, and, by calculating their spectral
dimension, we infer some general properties for such types
of spaces. In order to do so, we adopt a group theoretical
construction that suits well the quantum group formalism.
For the noncommutative spacetimes considered, we find a
result qualitatively similar to that found in CDT and ERG,
i.e., a scale-dependent spectral dimension which reaches
its classical value only at large scales.
Spectral dimension.—A possible way to study the ge-

ometry of a Riemannian manifold M with metric g�� is

via the spectral theory of the scalar Laplacian � ¼
�g��r�r�, where r� is the covariant derivative. To

such an operator can be associated a heat kernel, i.e., a
function Kðx; y; sÞ on M�M� Rþ which solves the heat
equation

@sKðx; y; sÞ þ �xKðx; y; sÞ ¼ 0; (1)

with the initial condition Kðx; y; 0þÞ ¼ �ðx� yÞ= ffiffiffiffiffiffiffiffiffi
gðxÞp

.
It is a well known result that the (normalized) trace of

the heat kernel has the expansion

TrK ¼
R
dnx

ffiffiffiffiffiffiffiffiffi
gðxÞp

Kðx; x; sÞR
dnx

ffiffiffiffiffiffiffiffiffi
gðxÞp � 1

ð4�sÞn=2
Xþ1

i¼0

ais
i; (2)

where the coefficients are metric-dependent invariants
which can be calculated via recursion formulas, with a0 ¼
1. It is then possible to define the notion of spectral
dimension by the formula

ds � �2
@ logTrK

@ logs
: (3)

On flat space ai � 0 for i � 1, and so we recover ds ¼ n.
On a general classical curved space, ds ¼ n only at small s,
while deviations occur at large s due to the curvature. Since
we can identify the diffusion time swith the scale at which
we probe the manifold, when applying the classical expan-
sion (2) to our spacetime, we should take s to be small
compared to the characteristic dimension of the space but
still large compared to the Planck scale, or else this formula
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will not be valid anymore because of the metric fluctua-
tions, as suggested by the results in Refs. [6,7].

The usefulness of such a definition is in providing an
operational notion of dimension, which is a valuable alter-
native to the maybe more famous Hausdorff dimension
associated to the scaling exponent of the volume of a ball.

The solution of (1) is given by K ¼ hxje�s�jyi or in
terms of eigenvalues �j and eigenfunctions �jðxÞ of �:

Kðx; y; sÞ ¼ X
j

e��js�jðxÞ��
j ðyÞ; (4)

where it has to be understood that the spectrum might be a
continuum and in such a case the sumwould be replaced by
an integral. In flat spacetime, for example, we have

Kflatðx; y; sÞ ¼
Z dnp

ð2�Þn e
�p2seipðx�yÞ ¼ e�ðjx�yj2=4sÞ

ð4�sÞn=2 : (5)

We now want to generalize this notion to a noncommuta-
tive space of the kind associated to a quantum group
symmetry. In such a space, it is natural to define the
Laplacian from the quadratic Casimir operator of the
quantum group, in analogy to the general construction on
homogeneous spaces [13]. For example, in the case of a flat
Euclidean space En � ISOðnÞ=SOðnÞ, we find that the
spectrum of the Laplacian is given by the first Casimir
operator C1 ¼ P�P

� in the irreducible scalar representa-

tions, thus recovering (5). We can follow this route in a
straightforward way for the case of a quantum group and,
in particular, for a quantum deformation of the Poincaré
group, as we will now show.

A toy example: The sphere vs the quantum sphere.—To
illustrate the idea, it is useful to look at a simple example
first. Following Ref. [13], we write the heat kernel on a
homogeneous space as an integral of the heat kernel on the
symmetry group G over the isotropy group H:

KG=Hðx; y; sÞ ¼
Z
H
KGðe; gh; sÞdh; (6)

where y ¼ gx, g 2 G, and KG can be obtained by a
character expansion

KGðg; sÞ � KGðe; g; sÞ ¼ 1

VG

X
j

dj�jðgÞe�sCðjÞ; (7)

where the sum is over all of the irreducible representations
of G, dj is their dimension, �jðgÞ is the character of g 2 G

in the representation j, CðjÞ is the value of the Casimir
operator in that representation, and VG is the volume of G.
Plugging (7) into (6), one finds that the integration restricts
the summation to be only over the spherical representations
of G with respect toH, i.e., those which contain the singlet
of H.

Our first example, before moving to quantum spaces,
is the classical (unit) two-sphere S2 considered as
SUð2Þ=Uð1Þ. Using (7) and (6), one finds the expression

KS2ð	; sÞ ¼
1

4�

X1
l¼0

ð2lþ 1ÞPlðcos	Þe�slðlþ1Þ; (8)

where PlðxÞ are the Legendre polynomials and CðlÞ ¼
lðlþ 1Þ and which is of course equivalent to the expression
(4). Taking the trace is trivial, and we find

TrKS2 ¼
X1
l¼0

ð2lþ 1Þe�slðlþ1Þ: (9)

Finally, we can use formula (3) to get the spectral dimen-
sion, which we plot in Fig. 1(a). Note that the value ds ¼ 2
is reached exactly at s ¼ 0, and away from that it decreases
due to the curvature.
Consider now replacing the group SUð2Þ by the quantum

group SUqð2Þ for real q, which is generated by the opera-

tors Jþ, J�, and J3 obeying the commutation relations

½J3; J�� ¼ �J�; ½Jþ; J�� ¼ sinhðzJ3Þ
sinhðz=2Þ ; (10)

where z ¼ lnq. Such generators belong to the quantum
Hopf algebra Uq½suð2Þ� whose representations are well

known (see, for example, [14]) and parallel (for real q)
those of suð2Þ, in the sense that for every j ¼ 0; 12 ; 1; . . . the

Hopf algebra Uq½suð2Þ� has a (2jþ 1)-dimensional repre-

sentation fjj; mi; m ¼ �j;�jþ 1; . . . ; jg, with J3jj;mi ¼
mjj; mi [the action of J� and the coalgebra structure are
different from those of suð2Þ but we do not need them
here]. The Casimir operator in the representation j is given
by

C ðjÞ ¼ cosh½zð2jþ 1Þ=2� � coshðz=2Þ
2sinh2ðz=2Þ : (11)

The above steps for the case of SUð2Þ can be repeated for
SUqð2Þ; in particular, the integration overUð1Þ restricts the
sum over representations to only those with integer j, i.e.,
those containing the singlet of Uð1Þ which correspond to
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FIG. 1 (color online). (a) The spectral dimension of a unit
sphere SUð2Þ=Uð1Þ. (b) The case of a quantum sphere
SUqð2Þ=Uð1Þ, for z ¼ 0:01.
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m ¼ 0. We only need to replace in (9) the standard suð2Þ
Casimir operator with (11).

Again the spectral dimension can be computed (numeri-
cally) using (3), and the result is plotted in Fig. 1(b).
Clearly, the behavior is the standard one for large s, but
it deviates sensibly as s decreases, with ds never reaching
the value d ¼ 2 and going instead down to zero. We can
think of this phenomenon as a signature of the fuzziness of
the quantum sphere or of fractal behavior at short scales.

�-Minkowski spacetime.—�-Poincaré algebra was de-
rived in Ref. [15] as a particular contraction of the quantum
anti–de Sitter algebra Uq½Oð3; 2Þ� in which the anti–

de Sitter radius R goes to infinity while R lnq ¼ ��1 is a
real number which is held fixed and finite, a limit which
might be of relevance for a theory of quantum gravity [16].
The result of such contraction is another Hopf algebra
which is conveniently expressed in terms of the so-called
(symmetric) bicrossproduct basis [8], such that the bi-
crossproduct structure of �-Poincaré algebra P � ¼
U½soð3; 1Þ�xbT becomes evident, with generators of ro-
tation Mj and boost Nj forming the standard Lorentz

algebra and with deformed action of U½soð3; 1Þ� on the
translation sector T given by the remaining commutators

½Ni; P0� ¼ e�ðP0=2�ÞPi;

½Ni; Pj� ¼ �ije
�ðP0=2�Þ

�
� sinh

P0

�
þ 1

2�
~P2
�

� 1

2�
e�ðP0=2�ÞPiPj:

(12)

As shown in Ref. [17], Hermitian irreducible represen-
tations of the Poincaré algebra with C1 ¼ P�P

� � 0

can be lifted to Hermitian irreducible representations of

�-Poincaré algebra with C�1 ¼ ð2� sinhP0

2�Þ2 � ~P2 � 0, and

the latter reduce in the � ! 1 limit to the undeformed
ones.

�-Minkowski spacetime was introduced in Ref. [8] as
the space which is dual to the translation sector of
�-Poincaré algebra and on which the whole �-Poincaré
algebra acts covariantly and, as such, is a subgroup of the
so-called �-Poincaré group [18]. It turns out to be a non-
commutative spacetime with coordinates x̂� satisfying the
relations

½x̂0; x̂j� ¼ i

�
x̂j; ½x̂i; x̂j� ¼ 0: (13)

One nice consequence of the bicrossproduct structure is
that the dual P�

� possesses the same structure, i.e., P�
� ¼

T�cvC½SOð3; 1Þ�, and so we can think of �-Minkowski
spacetime as the homogeneous space P�

�=SOð3; 1Þ, and this
justifies us in applying the previous formalism for evaluat-
ing the trace of the heat kernel on �-Minkowski spacetime.

Before doing that, we have to switch to the Euclidean
signature in order to make sense of our definition of
effective dimension, but this constitutes no problem; it

just amounts to the substitution (see, for example, [19])
P0 ! iP0, � ! i�. When applied to the first Casimir
operator of the algebra, such a substitution yields

C �
1 ¼

�
2� sinh

P0

2�

�
2 þ ~P2; (14)

in agreement with a naive extension of the two- and three-
dimensional cases [20].
Next, we also have to note that any function of C�1 is still

a valid Casimir operator, because by having an extra
parameter which is dimensionful we can construct arbi-
trary functions with mass-squared dimension, the only
restriction being given by the classical limit � ! 1. To
select one unique expression, we can make an appeal to the
existing theory of differential calculus on �-Minkowski
spacetime [21] (see also [22] for recent applications to
quantum field theory on �-Minkowski spacetime) and
compare our group theoretical construction with the
Laplacian defined via such differential calculus. We find
that, in the basis we have chosen, the eigenvalues of the
Laplacian are given by

M2ðpÞ ¼ C�1 ðpÞ
�
1þ C�1 ðpÞ

4�2

�
: (15)

We can now useM2ðpÞ as the Casimir eigenvalue and write
down the following formula for �-Minkowski spacetime:

TrKq ¼
Z d�ðpÞ

ð2�Þn e�sM2ðpÞ; (16)

where we have also used the �-deformed Lorentz invariant

measure d�ðpÞ � eð3p0=2�Þd4p. Finally, from (3) we obtain
the spectral dimension of (the Wick-rotated) �-Minkowski
space. The integration cannot be done analytically, but
numerically it poses no problems, and we can plot the
result as, for example, in Fig. 2. The limiting values at
s ! 1 and s ! 0 can be obtained analytically by taking
the limits of, respectively, small and large p0=� for the
integrand, obtaining
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FIG. 2 (color online). A plot of the spectral dimension ds of
�-Minkowski space for � ¼ 1 as a function of the diffusion time
s. For comparison, we plot also the constant behavior of the
spectral dimension of classical Minkowski space (ds ¼ 4).
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ds ¼
�
4 for s ! 1;
3 for s ! 0:

(17)

The behavior in (17), our main result, is qualitatively
similar to those in Refs. [6,7] with the main difference
being the short scale behavior leading to an effective
dimension ds ¼ 3 in our case rather than ds ¼ 2 as in
Refs. [6,7]. The fact that the effective dimensionality de-
parts from an integer value, and from the topological
dimension, in particular, is a typical signature of fractal
geometry. The meaning of fractal in the context of non-
commutative geometry is actually a largely unexplored
subject, but certainly the behavior found for the spectral
dimension can be interpreted qualitatively as a defining
property of fractal nature.

The result (17) can also be understood by noticing that
the dispersion relation (14) looks like that associated to a
finite difference operator (along the time direction). Such
an interpretation of the �-deformed Klein-Gordon operator
was known since the early days of �-Poincaré algebra [23].
In light of this analogy, one might then think of the
diffusion process being trapped at short diffusion times s
in a continuous three-dimensional slice and that only at
large scales the discreteness in time t would become ir-
relevant and thus look like an additional continuous di-
mension. On the other hand, the analogy is purely formal
as one should notice that the finite difference operator acts
along the imaginary axis and that there is actually no
discretization of time in the �-Minkowski construction (t
can take any value). For these reasons, we prefer to think
of (17) as a result of the noncommutativity of spacetime at
the short scale, with the consequent uncertainty relations
that would allow one to precisely determine three space
coordinates but not the fourth (time).

Conclusions.—We have shown how the result of
Refs. [6,7] about the dynamical dimensional reduction at
short scales can be reproduced, in its qualitative aspect, by
a noncommutative spacetime with quantum group symme-
try. In light of the comment above, it is tempting to con-
jecture that the value of the spectral dimension in the far
ultraviolet limit is generally given by the dimension of the
maximal commutative subspace. If that turns out to be true,
at least within a certain hypothesis (for the quantum sphere
above, it is not true), then it would be easy to construct a
spacetime whose spectral dimension goes to 2 in the UV,
thus paralleling the result in Refs. [6,7] also quantitatively.
Less trivial is to identify the associated quantum group and

thus prove such a conjecture. We hope to come back to this
issue in the near future.
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