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Models with vector fields acquiring a nonvanishing vacuum expectation value along one spatial

direction have been proposed to sustain a prolonged stage of anisotropic accelerated expansion. Such

models have been used for realizations of early time inflation, with a possible relation to the large scale

cosmic microwave background anomalies, or of the late time dark energy. We show that, quite generally,

the concrete realizations proposed so far are plagued by instabilities (either ghosts or unstable growth of

the linearized perturbations) which can be ultimately related to the longitudinal vector polarization present

in them. Phenomenological results based on these models are therefore unreliable.
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Introduction.—Observations of the cosmic microwave
background (CMB) anisotropies in the WMAP experiment
[1] are in overall agreement with the inflationary paradigm.
However, certain features of the full sky maps seem to be
anomalous in the standard picture. These anomalies in-
clude the low power in the quadrupole moment [2], the
alignment of the lowest multipoles, also known as the
‘‘axis of evil’’ [3], and an asymmetry in power between
the northern and southern ecliptic hemispheres [4]. The
statistical significance of these effects has been debated in
the literature. The discussion is complicated by the diffi-
culty of quantifying the a posteriori probability of the
effects in the different maps produced by foreground clean-
ing methods and in the context of statistical anisotropy
where the use of the angular power spectrum as a statistic
can be misleading. However, recent studies on properly
masked data have shown that an anisotropic covariance
matrix fits the WMAP low-‘ data at the 3:8� level [5,6].
The significance of the anomalous lack of large-angle
correlations, together with the alignment of power, has
also grown in strength with the latest data [8], with only
1 in 4000 realizations of the concordance model in agree-
ment with the observations.

Such violations of statistical isotropy are considered at
odds with the standard phase of early inflation. However,
an albeit more plausible explanation of these anomalies
arising from a systematic effect or foreground signal af-
fecting the analysis is not forthcoming. This has led to a
number of attempts at reconciling some of the anomalies
with the standard inflationary picture through various mod-
ifications. Specifically, the alignment of lowest multipoles
could be related to an anisotropic inflationary era, whose
duration is fine-tuned so that the signature will be observed
in the modes entering the horizon today, thus modifying
the lowest multipoles [9,10]. An anisotropic expansion has
also been considered for late time acceleration [11].
Although the present statistics of the observed supernovae
do not show any evidence for the anisotropy [12], such
studies are motivated by the large increase of data that is

expected in the next few years, with surveys returning
many thousands of SN Ia light curves over thousands of
square degrees, and by the fact that one should keep an
open mind on the nature of dark energy given our present
lack of understanding.
Anisotropic, but spatially homogeneous, backgrounds

were classified into equivalence classes long ago by
Bianchi [13]. In the presence of a cosmological constant
and matter fields satisfying strong and dominant energy
conditions, all Bianchi models, with the possible exception
of Bianchi type IX, undergo a rapid isotropization [14].
The full formalism for cosmological perturbations in
Bianchi type I backgrounds (the simplest of these classes)
has been recently developed in [9,10], with an application
to the case in which the only source is a slowly rolling
inflaton field, which causes the isotropization as an effec-
tive cosmological constant. This is the simplest anisotropic
scenario which can be associated with a later inflationary
stage. In principle, such a background solution can have
striking signatures, provided that the following inflationary
stage is not too long. Specifically, different a‘m coefficients
of the CMB multipole expansion are correlated to each
other, and the two gravity wave polarizations behave in a
nonstandard manner and can differ from each other [9]. In
the case of axisymmetric expansion (equal expansion rate
in two directions), one of the two gravity wave polariza-
tions experiences a large growth during the anisotropic era,
which may result in a large B signal in the CMB [15].
Such simple models, however, do not allow for a small

and controllable departure from isotropy. Indeed, the iso-
tropization due to the (effective) cosmological constant
starts from a (Kasner-type) singularity [15] and lasts only
for about one e-fold (�t�H�1, where H is the expansion
rate due to the cosmological constant). As a consequence,
one loses predictive power on the initial conditions for the
system. A prolonged anisotropic stage can be obtained by
introducing some ingredients that violate the premises of
Wald’s theorem [14] on the rapid isotropization of Bianchi
universes. This has been realized through the addition of
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quadratic curvature invariants to the gravity action [16],
with the use of the Kalb-Ramond axion [17], or of vector
fields [18]. In this Letter, we focus on this last possibility,
as it is perhaps the simplest one (at least, from a technical
point of view). The evidence for an anisotropic covariance
matrix reported in [5] is based on a primordial power
spectrum for the perturbations which is motivated by one
of such models [19]; therefore, such constructions deserve
close scrutiny.

In these models, a vector field with a nonvanishing
spatial vacuum expectation value (VEV) is responsible
for the anisotropy. To our knowledge, there are three differ-
ent realizations of this mechanism. The oldest one dates
back to 1989 [18], and the VEVof the vector field is due to
a potential VðA�A

�Þ involving only the vector A�. A more

recent proposal is characterized by a nonminimal coupling
RA�A

� of the vector field to the curvature [20]. For a

special value of this coupling, the VEV of A� can have a

slow roll evolution. While the original proposal of this idea
[22] realizes an inflationary background through several
vector fields, Ref. [23] suggested a simplified version in
which an inflaton scalar field is the main source of expan-
sion, while the vector field supports the anisotropy. A
completely different class of models makes use of a
Lagrange multiplier to force a spacelike fixed VEV for
the vector field [19,24]. These three different implementa-
tions have been realized and studied by several authors
[11,27–29].

We show that these three classes of models contain
instabilities which did not emerge in previous studies.
We see this from the linearized study of the perturbations
around the anisotropic inflationary solutions of these mod-
els. As in all slow roll inflationary backgrounds, each mode
of the perturbations is initially in the small wavelength
regime (the wavelength is exponentially small at early
times); as the background inflates, the wavelength becomes
larger than the Hubble horizon H�1

a ’ H�1
b and the mode

enters the large wavelength regime. This transition is
dubbed horizon crossing. For the model of [18], the system
of perturbations contains a ghost in the small wavelength
regime. For the case of the nonminimal coupling with
curvature of [22,23], and the fixed-norm case of [19], the
ghost appears from some interval of time close to horizon
crossing [30]. The system of linearized perturbations blows
up at this moment [31].

Complete computations of cosmological perturbations
are rather tedious, and, for the above models, require
involved algebra. We have performed them along the lines
of [9]. We first write the most general system of perturba-
tions (both of the metric and of the vector field). We then
fix the freedom of general coordinate invariance, we inte-
grate out the nondynamical modes, and finally we study the
remaining system of dynamical perturbations. The diver-
gence of the linearized perturbations is found by solving
the linearized Einstein equations. Ghosts are found from
studying the kinetic matrix that couples the dynamical

perturbations in their quadratic action. The complete com-
putation is very lengthy, and it will be reported separately
[33]. The fact that the instability is related to the vector
field, fortunately suggests that a partial study, with only the
perturbations of this field included, can shed light on the
true nature of the problem, without the need to go through
the technicalities of the full computation. The results of
this analysis, which are summarized in the next section,
show that this is indeed the case. The significance of these
results is discussed in the concluding section.
Instabilities.—Assuming a spatial VEV of the vector

field aligned along the x direction, the line element is

ds2 ¼ �dt2 þ aðtÞ2dx2 þ bðtÞ2½dy2 þ dz2�: (1)

We introduce the two expansion rates Ha � _a=a, Hb �
_b=b, and we define their averageH and rescaled difference
h through H � ðHa þ 2HbÞ=3 and h � ðHb �HaÞ=3. The
inflationary expansions that we consider below are charac-
terized by constant or slowly evolving rates. For the models
we are considering, h=H ¼ OðB2Þ, where B is the rescaled
VEV of the vector field hAxi � MpaB [18,19,23].

Therefore, B must also be slowly rolling during the slow
roll regime. We consider the phenomenologically relevant
case of moderate anisotropy, B< 1.
Before studying these models, consider a massive vector

field in an isotropic background [Eq. (1) with a ¼ b]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

4
F��F

�� �M2

2
A�A

�

�
: (2)

We assume that A� has vanishing VEV, and we decompose

its fluctuations as A� ¼ ð�0; @i�L þ �T
i Þ. The transverse

vector perturbation �T
i , satisfying @i�

T
i ¼ 0, contains two

physical modes. These modes are well behaved, and de-
coupled from the �0, �L perturbations. We disregard them
in the following. ForM2 � 0, the two perturbations �0, �L

encode one additional degree of freedom, namely, the
longitudinal vector polarization. Indeed the mode �0 is
nondynamical, since it appears without time derivatives
in the action, and must be integrated out. Its equation of
motion, after Fourier decomposition in the spatial direc-
tions, gives �0 ¼ ½p2=ðp2 þM2Þ� _�L, where p ¼ k=a is
the physical momentum of the mode, k the comoving
momentum, and dot denotes time differentiation.
Inserting this solution back into (2) we obtain the action
for the dynamical mode:

Slongitudinal ¼
Z

dtd3ka3
p2M2

2

� j _�Lj2
p2 þM2

� j�Lj2
�
: (3)

The longitudinal vector mode exists due to the mass term,
so it is not a surprise that M2 multiplies the kinetic term.
We see that this mode is a ghost for M2 < 0.
Let us now turn to the models of our interest. The two

models [18,23] can be studied together, using [34]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

p

2
R� F2

4
� VðA2Þ þ �

2
RA2

�
: (4)
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Expanding the potential at quadratic order in A�, and

comparing with Eq. (2), this action leads to the mass term

M2 ¼ 2
@V

@A2
� �R ¼ 2

@V

@A2
� 6�ð2H2 þ h2 þ _HÞ: (5)

The equations of motion for the rescaled VEV B obtained
from (4) is €Bþ 3H _BþQB ¼ 0, with

Q �2
@V

@A2
�2Hh�5h2�2 _hþð1�6�Þð2H2þh2þ _HÞ:

Slow roll of B requires Q � H2 (since the 3H _B term
provides a ‘‘friction’’ to the motion). This is achieved in
two different ways by [18,23]. Reference [18] studied
solutions with constant Ha;b in the absence of the A2R
term, � ¼ 0. This requires Q ¼ 0, or, in other terms,

@V

@A2
¼ �H2 þHhþ 2h2 ¼ �HaHb < 0: (6)

This corresponds to a negative square mass in Eq. (5).
From our discussion of the model (2) we therefore imme-
diately see that the longitudinal vector polarization is a
ghost in the limit of isotropic background (B ¼ 0). In [23],
the choice � ¼ 1=6 is made, so that (following the idea of
[22]) the OðH2Þ contribution is absent fromQ. Then, slow
roll is achieved in the case of small anisotropy, B � 1, and
for @V=@A2 � H2. We then see that the square mass
parameter (5) is negative in this limit, indicating that the
longitudinal vector polarization is a ghost in the isotropic
limit in this case too. It is not immediate to prove that the
same conclusion also holds when the background is aniso-
tropic, and when gravity (background plus fluctuation) is
consistently included [35]. However, the complete compu-
tations of [33] show that this is the case for the models
under consideration.

Finally, let us discuss the stability of model [19],

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

p

2
R� F2

4
þ �ðA2 �m2Þ � V0

�
: (7)

In this case, the rescaled VEV B is forced to be constant,
and equal to m=Mp by the Lagrange multiplier �. One

then finds a background solution with constant expansion
rates satisfying Hb ¼ ð1þ B2ÞHa [19]. We decompose
the vector field in VEV plus fluctuations, A� ¼ hA�i þ
ð�0; �1; @i�þ �iÞ where the index i ¼ 2; 3 spans only the
coordinates of the y-z plane, and @i�i ¼ 0. The equation of
motion for �, once expanded at the linearized level in the
perturbations, reads B�1 ¼ 0. This equation identically
vanishes if the background is isotropic (B ¼ 0), while it
eliminates one of the vector perturbations for B � 0.
Therefore, contrary to the previous study, we cannot con-
sider the isotropic limit in this case.

We are interested in the quadratic action for the pertur-
bations. It is easy to see that the perturbations �i decouple.
We are then left with a quadratic action containing �0 and
�. �0 is nondynamical in this case too, and can be inte-
grated out, leading to the quadratic action

�2S ¼ 1

2

Z
dtd3kab2p2

Tðp2
L � 2HaHbÞ

�
� j _�j2
p2
L þ p2

T � 2HaHb

� j�j2
�
; (8)

where pL and pT are the components of the physical
momentum along the x direction and in the perpendicular
plane, respectively. We see the presence of a ghost close to
horizon crossing (Ha and Hb are constant, while the physi-
cal momentum exponentially decreases, pL / a�1, pT /
b�1). Moreover, the kinetic term for � vanishes when
p2
L ¼ 2HaHb. As a consequence, the solution diverges at

that moment (� diverges logarithmically, while �0 linearly
[33]). This exact problem appears also in the full compu-
tation [33] (also for the models [22,23]): all linearized
modes diverge close to horizon crossing.
Discussion.—We start by stressing the limits of our

computation. The above results have been obtained for
standard kinetic terms for the vector field. Since the
U(1) symmetry is already broken by the potential term,
there is no special reason for this choice. Indeed, works on
Lorentz violating vector fields study generalized kinetic
terms of the type L � ��1r�A�r�A� � �2ðr�A

�Þ2 �
�3r�A�r�A�. The standard kinetic term corresponds to

�1 ¼ ��3 ¼ 1=2, �2 ¼ 0. Reference [18] only discusses
the case of a standard kinetic term. We have studied
perturbations in this model for arbitrary �i coefficients.
We find that the ghost is absent for �1 þ �2 þ �3 � 0.
However, in this case one of the perturbations is a tachyon
in the early time (small wavelength) regime [33].
Reference [28] showed that the model [19] is unstable in
the case of �1 þ �2 þ �3 � 0 [36]. For the nonminimal
coupling to the curvature, all the studies done so far are
limited to standard kinetic terms, and therefore our com-
putations have also been restricted to this case. A second
limitation is related to the fact that we have performed
specific computations only for the three models [18,19,23].
However, these models are ‘‘prototypes’’ for the three
different ways of obtaining the nonvanishing spatial VEV
explicitly realized in the literature. We expect that the
issues raised here also arise in all models for which the
anisotropy is obtained in one of these three ways.
Because of these limitations, we do not claim to rule out

all possible models of anisotropic expansion through vec-
tor fields. Nonetheless, the issues we have found are spe-
cific to models with vector fields, and should be checked in
the stability analysis of all these models. Already the
presence of a ghost indicates that the theory is valid only
below some energy � (since the vacuum decays in ghost-
nonghost quanta with a rate that diverges in the UV). In the
models we have studied, there is the additional problem
that the linearized solutions diverge close to horizon cross-
ing. The computation of cosmological perturbations, and
the associated phenomenology, requires that the subhori-
zon regime is under control (this is the reason why it is
commonly argued that inflation probes physics at the en-
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ergy scale H). While it is possible that the full nonlinear
solutions are not diverging, and that the models could
admit a UV completion without ghosts, the phenomeno-
logical predictions that have been derived from the line-
arized computations for these models are invalid. Although
our concrete studies have produced a negative outcome, we
hope that some specific constructions will eventually over-
come the issues found here.
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