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We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided

they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of

quantum key distribution based on weak coherent states or other continuous variable states against general

attacks.
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Composite quantum systems are, in general, very hard to
analyze. This is due to the exponential growth of the
number of parameters required for their description with
N, the number of subsystems. Under certain symmetry
assumptions, however, the analysis may be vastly simpli-
fied. This occurs, for instance, whenever the state of the
whole system, �N , is invariant under permutations of the
subsystems. In such a case, the quantum version [1,2] of de
Finetti’s classical representation theorem [3] enables us to
approximate �N by a convex combination of density op-
erators which have an independent and identically distrib-
uted (i.i.d.) structure ��N on most subsystems [4]. I.i.d.
states can be easily parametrized (they are characterized by
the state � of a single subsystem), and a huge variety of
tools are available to handle them.

Quantum key distribution (QKD) [5,6] represents a rele-
vant scenario where permutation symmetry naturally ap-
pears and the quantum de Finetti representation is of
utmost importance. Roughly speaking, QKD is the art of
establishing a secret key between two distant parties, tradi-
tionally called Alice and Bob, connected only by an in-
secure quantum channel. Most QKD protocols have the
property that N signals are exchanged sequentially, but the
order in which they are transmitted is irrelevant. One can
then assume without loss of generality that the N-partite
density operator describing Alice and Bob’s information is
permutation invariant (even if, upon transmission, the sig-
nals are modified arbitrarily by an adversary). Hence,
according to the quantum de Finetti representation theo-
rem, the density operator approximately has i.i.d. structure.
This, on the other hand, exactly corresponds to the assump-
tion that the adversary’s attack is collective [7,8], meaning
that the adversary manipulates each of the transmitted
signals independently and identically. Consequently, for
assessing the security of a QKD protocol against general
attacks, it is sufficient to consider the (restricted) class of
collective attacks. These are well understood for most
protocols that have been proposed in the literature, and

explicit formulas for the key rate are known (see, e.g., [9]
for protocols with one-way communication).
The goal of this Letter is to overcome a main limitation

of this argument, namely, that it only applies to discrete
variable QKD schemes with low-dimensional signal space.
This limitation is due to the fact that the de Finetti repre-
sentation is generally invalid if the dimension d of the
individual subsystems exceeds the number N of subsys-
tems, as shown by an explicit example in [2]. In particular,
the argument does not directly extend to continuous vari-
able schemes [10–19], where dmay be unbounded; in fact,
no security proof against general attacks has been known to
date for schemes based on high-dimensional information
carriers.
Here, we show that the restriction of the de Finetti

representation to low-dimensional systems can be circum-
vented under certain experimentally verifiable conditions.
More precisely, for any permutation invariant state on a
(possibly infinite-dimensional) system H �N, the reduced
state on H �n, for some n � N, is approximated by a
mixture of density operators with i.i.d. structure, provided
that the outcomes of a certain measurement applied to a
few subsystems lie within a given range. In particular, we
consider measurements with respect to two canonical ob-
servables X and Y on H ¼ L2ðRÞ, i.e., ½X; Y� ¼ i. The
criterion then is that the outcomes of both the X and the Y
measurements have small absolute value. In practical ap-
plications, this criterion is often easily verifiable. For ex-
ample, in continuous variable quantum cryptography,
which uses signals in H ¼ L2ðRÞ, measurements with
respect to two canonical observables X and Y are usually
already part of the protocol. Our extended version of de
Finetti’s theorem then implies that these protocols are
secure against the most general attacks, since the security
against collective attacks has already been established (see,
e.g., [20–22]).
Let us start out by summarizing the main statements of

this work. Let �N be a permutation invariant state on an
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N-fold product spaceH �N , that is,��N��1 ¼ �N for any
permutation �. Our result now consists of two parts. The
first (Lemma 2) says that, conditioned on the outcomes of a
certain measurement M applied to k subsystems, for 1 �
k � N, the joint state �M of the M ¼ N � k remaining
subsystems almost certainly lies in the subspace SM

�H �M�k of

H �M spanned by vectors which on all except k subsys-
tems H are contained in a low-dimensional subspace
�H � H , i.e.,

S M
�H �M�k

:¼ span
[
�

�ð �H �M�k �H �kÞ��1; (1)

where the union is taken over all permutations �. The
second part of our result is a de Finetti-type statement
(Theorem 4, combined with Lemma 3) that applies to
(arbitrary) permutation invariant states in SM

�H �M�k . It pro-

vides an approximation of these states in terms of a convex
combination of states that have i.i.d. structure on almost all
subsystems. In the following we will give a precise for-
mulation of these statements and explain the main steps
required to prove them. We refer the reader to Ref. [23] for
the detailed proofs.

To start the first part of the results, and for the sake of
concreteness, we assume that H ¼ L2ðRÞ and that the
measurement M which is applied to the k subsystems of
H �N is with respect to two canonical observables X and
Y, each chosen with probability 1

2 . We then consider the

condition that the measurement outcomes z satisfy z2 < n0
2

for some given n0. In other words, the condition is that
measurements with respect to both X2 and Y2 result in
small values. This, intuitively, implies that also the out-
comes of measurements with respect to X2 þ Y2 (i.e., with
respect to the number basis) are small.

To make this more precise, let PZ�z0 be the projector
onto the subspace spanned by the eigenspaces of Z corre-
sponding to (generalized) eigenvalues z � z0, for any

Hermitian operator Z and z0 2 R. Furthermore, let U1 :¼
1
2P

X2�n0=2 þ 1
2P

Y2�n0=2 and V1 :¼ PX2þY2�2n0þ1. We then

define the quantity

�U1!V1
ð�Þ :¼ supftrðV1�Þ: � 2 ðH Þ; trðU1�Þ � �g;

which corresponds to the maximum probability that the
outcome of a measurement of a state � with respect to
X2 þ Y2 is larger than 2n0, for any � such that measure-
ments with respect to X2 and Y2 give values smaller than n0

2

except with probability �. According to the following
lemma, this quantity is small for small values of �.

Lemma 1.—For any n0 2 N and � � 0, �U1!V1
ð�Þ �

4�þ 4ffiffiffiffiffiffiffiffiffiffi
c0�n0

p e�n0c0 , with c0 ¼ ð1� 1=
ffiffiffi
2

p Þ2.
Proof.—We define the operator W1 :¼ 1

�

R
d��j�ih�j,

where j�i denotes coherent states and the integral ranges
over the complex plane with j�j2 � n0. The claim then
follows from the two operator inequalities V1 � 2W1 and
W1 � 2ðU1 þ 1ffiffiffiffiffiffiffiffiffiffi

c0�n0
p e�n0c01Þ, which we prove separately.

To derive the first operator inequality, we expand W1 in
the Fock basis, fjnifg1n¼0, which gives W1 ¼

P
qnjnifhnj

with qn ¼ �ðnþ 1; n0Þ=�ðnþ 1; 0Þ, where � is the incom-
plete Gamma function [24]. Since qnþ1 � qn > 0, we can
write V1 � q�1

n0 W1, where q�1
n0 ¼ �ðn0 þ 1; 0Þ=�ðn0 þ

1; n0Þ< 2.
For the second operator inequality, we first extend our

Hilbert space to H 1 �H 2 and show that

W1 ¼
Z

dxdyfh0jUðjxiXhxj � jyiYhyjÞUyj0if; (2)

where the integral is defined for x, y 2 R with the re-
striction x2 þ y2 � n0. Here j0if 2 H 2, and jxiX;Y de-

note generalized eigenstates of X and Y, respectively.

Furthermore, U ¼ eð�=4Þða1�a
y
2
�ay

1
�a2Þ is the so-called

beam splitter operator [25], where a1;2 :¼ ðX1;2 þ
iY1;2Þ=

ffiffiffi
2

p
are the annihilation operators acting on the first

and second system, respectively. This expression for W1

can be derived by showing that fh0jUjxiX � jyiY ¼
��1=2j�i, with � ¼ xþ iy. By looking at the integration
domain in (2) it is clear that W1 � Aþ B, where

A ¼
Z

dxdx0fh0jUðjxiXhxj � jx0iXhx0jÞUyj0if;

B ¼
Z

dxdx0fh0jUðjx0iYhx0j � jxiYhxjÞUyj0if;

where the integral is restricted to jxj2 � n0=2, and where
we have used that the integral of jx0iXhx0j is equal to that of
jx0iYhx0j. It is straightforward to verify that

A ¼ 1ffiffiffiffi
�

p
Z
jzj2�n0

dze�ðz�XÞ2 ¼: FðXÞ

and that FðXÞ � PX2�a2 þ FðaÞ for all a > 0, and, simi-

larly, for B. Noting that FðaÞ � ð1= ffiffiffiffi
�

p Þe�ð ffiffiffiffi
n0

p �aÞ2=ð ffiffiffiffiffi
n0

p �
aÞ, for a 2 ½0; ffiffiffiffiffi

n0
p �, and choosing a ¼ ffiffiffiffiffiffiffiffiffiffi

n0=2
p

we con-

clude the proof. h
We now combine Lemma 1 with a result from [26]. The

latter allows to infer the statistics of measurements on the
subsystems of a permutation invariant state �N with respect
to a positive operator valued measure (POVM) V , given
the statistics obtained by measuring a (small) sample of
subsystems with respect to a (possibly different) POVM
U. For our purpose, we let U ¼ fU0 ¼ 1�U1; U1g be
the binary POVM that describes a measurement according
to X or Y followed by a test which outputs 0 whenever the
outcome z is bounded by z2 < n0

2 and 1 otherwise.

Likewise, V ¼ fV0 ¼ 1� V1; V1g outputs 1 whenever a
measurement with respect to X2 þ Y2 gives an output
larger than 2n0.
Given a permutation invariant state �N , let fu and fv be

the relative frequencies of outcomes 1 obtained from mea-
surementU applied to the first k subsystems and measure-
mentV applied to the remainingM ¼ N � k subsystems,
respectively. Then, according to [26] (see also Lemma III.1
of [23]), the frequency fv is essentially upper bounded by
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�U1!V1
ðfuÞ except with probability exponentially small in

k. The crucial observation now is that a small value of fv is
equivalent to a successful projection onto the subspace

SM
�H �M�k of H �M, for �H defined as the support of

PX2þY2�2n0 . Using this and Lemma 1, we arrive at the
following statement.

Lemma 2.—Let (z1; . . . ; zk) be the outcomes of measure-
ments with respect to X and Y (both chosen with proba-
bility 1

2 ) applied to k subsystems of a permutation invariant

state �N , and let� be the event that a projection on SM
�H �M�k

applied to the remaining M ¼ N � k systems fails. Then

Pr

�
� ^max

k

i¼1
z2i <

n0
2

�
� 8k3=2e�ðk3=25N2Þ

for any n0 � 12 lnð5N=kÞ and N=k 	 1.
The lemma implies that, with almost certainty, the joint

state of the remaining M subsystems is contained in the
space SM

�H �M�k , under the (experimentally verifiable) con-

dition that maxki¼1 z
2
i <

n0
2 . This concludes the first part of

our argument.
The second part of our result is about the structure of

general permutation invariant states �M on the subspace
SM

�H �M�k ofH �M, and can be seen as a generalization of the
de Finetti-type representation theorem proved in [2]
(where the Hilbert space H has been assumed to be low
dimensional). The main idea is to consider purifications of
�M on the symmetric subspace SymMðKÞ ¼ fc 2
K�M: �c ¼ c ð8 �Þg of K�M, for K ¼ H �H .
The following lemma, which is a generalization of
Lemma 4.2.2 of [1], states that such a purification always

exists and that the property of lying in �H � H in most
subsystems is conserved.

Lemma 3.—For any permutation invariant state �M on
SM

�H �M�k 
 H �M there exists a purification which lies both

in SymMðKÞ and SM
�K�M�2k 
 K�M, whereK ¼ H �H

and �K ¼ �H � �H .
The proof of the lemma is analogous to Lemma III.1 of

[27]. We refer to [23] for a full proof.
Lemma 3 allows us to restrict our attention to states on

SymMðKÞ \ SM
�K�M�2k . Theorem 4 below gives an approxi-

mation of such states in terms of convex combinations of
states that have almost i.i.d. structure ��M, except on a few
subsystems. More precisely, for some n � n0, we consider
the space Sn

��n0 :¼ Sn

ðspan�Þ�n0 , i.e., the span of all vectors

� 2 K�n that are, up to reorderings, of the form ��n0 �
�0 for some arbitrary �0 2 K�n�n0 . The quality of the
approximation is measured by the fidelity F.

Theorem 4.—Let �K be a d-dimensional subspace of a
Hilbert space K and let �M be a density operator on
SymMðKÞ \ SM

�K�M�2k . Then there exists a probability dis-

tribution p� on a finite setV of unit vectors � 2 �K and a
family f�̂M�4k

� g�2V of density operators on SM�4k
��M�8k such

that, for �M�4k ¼ tr4kð�MÞ,

F

�
�M�4k;

X
�2V

p��̂
M�4k
�

�
> 1� kde�ð4kðkþ1Þ=MÞ: (3)

The proof relies on a generalization of ideas developed
in [2] (see [23]).
Application to QKD.—The results outlined above can be

used to assess the security of QKD protocols against
general attacks. The following analysis applies to a large
class of QKD schemes, which includes almost all protocols
proposed in the literature [28]. More concretely, the fol-
lowing conditions must hold.
Property 1.—The protocol is invariant under permuta-

tions of the N particle pairs held by Alice and Bob after the
distribution phase. (This requirement is usually satisfied
because each of the N signals is prepared, sent, and re-
ceived independently of the other signals.)
Property 2.—In a final privacy amplification step

[31,32], the key is computed by two-universal hashing
[33]. (This criterion is not restrictive because two-universal
hashing is optimal with respect to the extractable key
length [1].)
Property 3.—The protocol employs measurements to

check that the dimension of the relevant subspace �H of
the signal spaceH is small compared to N. (Note that this
step is unnecessary if the signal space already has small
dimension.) For example, if the signal space is H ¼
L2ðRÞ, the measurement may be with respect to two ca-
nonical observables X and Y, each of them chosen with
probability 1

2 . The protocol then only continues if all out-

comes z satisfy z2 < n0
2 , for some appropriately chosen

n0 ¼ dimð �H Þ (see Lemma 1 and Lemma 2).
According to Property 1, if a key distilled fromN signals

in state �N is secure then the same is true for the key
distilled from a permuted state ��N�y, for any permuta-
tion � 2 SN . We can thus assume without loss of general-
ity that the N signals are permuted at random and, hence,
their state �N is permutation invariant [34]. Now, accord-
ing to our de Finetti representation theorem and using
Property 3, we conclude that the reduced state �n, for
some n � N, is approximated by a mixture of almost
i.i.d. states �̂n

�. Finally, we use Property 2, which implies
that the only relevant quantity is the smooth min-entropy of
the raw key conditioned on the adversary’s information
(the smooth min-entropy is a measure for the number of
bits that can be extracted by two-universal hashing [32]).
The smooth min-entropy of almost i.i.d. states �̂n

� is ap-
proximated by the entropy of i.i.d. states ��n, as shown in
[1]. Hence, we can without loss of generality assume that
�n is a mixture of i.i.d. states, which could equivalently be
the result of a collective attack. Summarizing, we have thus
proved that any QKD protocol satisfying the properties
above is secure against general attacks whenever it is
secure against collective attacks [35].
Conclusions.—We have shown that permutation invari-

ant states on large N-partite systems are approximated by a
convex combination of almost i.i.d. states, provided mea-
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surements on a few subsystems with respect to certain
observables only give bounded values. In particular, under
this condition, a permutation invariant state can be consid-
ered equal to an unknown i.i.d. state, except on an arbi-
trarily small fraction of the subsystems. This has various
implications. Of particular interest to experimental physics
is that state tomography can be employed without the need
for i.i.d. assumptions, as discussed in [2]. An important
difference of our result compared to previously known de
Finetti-type theorems is that it does not rely on nontestable
assumptions such as that the dimension of systems is small
(as, e.g., in [2]) or that the states lie in certain subspaces (as
in [36]).

Applied to quantum cryptography, our result enables full
security proofs for QKD schemes in the (practically rele-
vant) case where the dimension of the signal space may be
unbounded. This is an intrinsic property of continuous
variable protocols, but the necessity of taking into account
infinite-dimensional systems may also arise in the analysis
of discrete variable schemes, for instance when they are
implemented using weak coherent pulses (see, e.g., [37])
and if alternative techniques such as the squashing method
[38] cannot be applied. The security of these schemes has
been investigated intensively, but existing proofs are only
valid under the assumption of collective attacks (see the
introductory part for references). The de Finetti represen-
tation theorem derived here allows us to drop this assump-
tion, implying that security holds against all possible
attacks.
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