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We study the effects of localization on quantum state transfer in spin chains. We show how to use

quantum error correction and multiple parallel spin chains to send a qubit with high fidelity over arbitrary

distances, in particular, distances much greater than the localization length of the chain.
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The reliable communication of quantum states from one
location to another is most likely necessary if large-scale
quantum computing is ever to be realized. Several years
ago, Bose [1] proposed using spin chains as the medium for
such quantum state transfer. Since then, there has been
much interest in this area, and numerous protocols have
been put forward which develop this idea [2–9].
Unfortunately, any real spin chain will inevitably have an
element of disorder inherent in the system. As pointed out
in [10], this can cause a phenomenon known as Anderson
localization [11] to take place. This is the process in which
the energy eigenstates of a disordered lattice become lo-
calized in space, rather than extending throughout the
system as they would in the absence of disorder. This in
turn inhibits state transfer beyond a distance known as the
localization length of the chain and provides a challenge
for the use of spin chains in quantum communication.
Although localization has been well studied in solid state
physics, its implications for quantum information are not
well understood [10,12–15]. Indeed, it is not clear at first
glance how the problems due to localization fit within the
standard error paradigm considered in quantum informa-
tion theory. First, rather than being due to some coupling of
the spin chain with the environment, localization is an
intrinsic source of error. Even in the absence of disorder,
the excitations carrying the quantum information become
spread out along the chain. In the presence of disorder, only
an exponentially small part of the signal reaches beyond
the localization length. Also, although we are only trying to
communicate a single qubit, the localization errors take
place in the larger Hilbert space of the entire chain.

In this Letter, we look more closely at the effect local-
ization has on spin chain state transfer and find that, for a
class of standard spin chain protocols, localization can
effectively be viewed as a source of amplitude damping
errors, where the damping parameter is dependent on the
distance propagated and the degree of disorder in the chain.
We then show how to use multiple spin chains and quantum
error correction [16,17] to achieve high fidelity quantum
information transfer over arbitrary distances, in particular,
over distances much greater than the localization length.
By considering a concatenation scheme, we show that if
the disorder is not too great, the number of spin chains

required scales only polylogarithmically with the distance
over which we wish to communicate.
A spin in the j1i state will be called an excitation. For a

system of N spins, we shall use a bold font j0i ¼ j00 . . . 0i
to denote the zero excitation state, and jji ¼
j0 . . . 010 . . . 0i to denote the single excitation state with
the jth spin in the state j1i, and all others in state j0i.
Let us consider the following communication scenario.

Alice and Bob are at opposite ends of a chain ofN spin-1=2
particles described by some nearest-neighbor Hamiltonian
H0. Alice’s task is to send, with as high a fidelity as
possible, an unknown qubit state to Bob. We shall assume
that (1) The system is isolated from the environment, and
thus there are no external sources of noise. (2) H0 com-
mutes with the total Z-spin operator

P
N
k �z

k and hence

conserves the number of excitations on the chain. (3) The
system starts in the initial state j0i. For example, H0 could
be a simple Heisenberg coupling (in the absence of an
external field)

H0 ¼ �ðJ=2ÞX
i

~�i � ~�iþ1 (1)

where J is the coupling constant between spins. Note that
we have not yet introduced disorder into the system.
The communication proceeds according to [2,3]. We

assume that Alice and Bob each have access to a number
� of spins at their ends of the chain. To begin, Alice
encodes the input state aj0i þ bj1i as a state of her� spins
in such a way that j0i is encoded as j0iA, and j1i is encoded
as j1ENCiA. Here, A denotes Alice’s addressable spins, and
j1ENCiA is a superposition of single excitation states, where
the excitations lie in Alice’s domain. The system then
undergoes unitary evolution for some time t. Note that as
a result of Alice’s encoding, and the fact that the
Hamiltonian preserves the total number of excitations,
the chain dynamics remain restricted to the N þ 1 dimen-
sional subspace spanned by the zero and single excitation
states. Finally, Bob applies a decoding unitary to his ad-
dressable spins. This concentrates the state onto a single
spin which he then takes as the output of the transfer. The
whole process is equivalent to sending Alice’s original
state down an amplitude damping channel with time-
dependent channel parameter �ðtÞ ¼ 1� CBðtÞ, where
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0 � CBðtÞ � 1. The corresponding average fidelity is

given by 1=2þ ffiffiffiffiffiffiffiffiffiffiffiffi
CBðtÞ

p
=3þ CBðtÞ=6.

There is a convenient way to visualize the transfer
process [2]. At time t, the state of the system can be
expressed as aj0i þ b

PN
j¼1 cjðtÞj0i, where

PN
j¼1 jcjðtÞj2 ¼

1. By plotting the quantities jcjðtÞj2 against site number j,

we can produce a graph of the state. Then, the quantity
CBðtÞ is given by the area under the graph supported by
Bob’s accessible sites. To achieve high fidelity transfer, the
strategy is to choose j1ENCiA to be a wave packet with a
particular shape that leads to minimal dispersion.

What happens now if there is disorder present in the
chain? Any real chain will, due to engineering limitations
and thermal fluctuations, have spin-spin couplings that are
not described by an ideal Hamiltonian such as (1). In
general, there may be complicated, time-dependent pertur-
bations to the Hamiltonian. However, here we consider the
simpler case of quenched disorder, with the additional
requirement that the perturbations do not couple the zero
and single excitation subspaces with each other, nor with
subspaces of larger numbers of excitations. For example,
the total Hamiltonian might take one of the following
forms, corresponding to diagonal and off-diagonal disor-
der, respectively,

H�
diag ¼ H0 þ

X
j

�jjjihjj (2)

H�
off-diag ¼ H0 þ

X
j

�jðjjihjþ 1j þ jjþ 1ihjjÞ (3)

where H0 is the Hamiltonian (1) and the �j and �j are i.i.d

real random variables drawn from some distribution P �

with bounded density, characterized by a disorder parame-
ter � (e.g., the uniform distribution in the interval [� �,
�]). It will become clear, however, that our results do not
depend on the details of the type of disorder present.

What are the implications of this for state transfer? In
spite of the disorder, the all zero state j0i trivially remains
an energy eigenstate and, furthermore, the chain evolution
remains restricted to the zero and single excitation sub-
spaces. This implies that the disordered chain still behaves
like an amplitude damping channel, where the damping
parameter depends on the area under the graph in Bob’s
domain. Figure 1 shows how increasing the degree of
diagonal disorder causes the graph of the state to suffer
from dispersion and reflection as it propagates.
Consequently, the area under the graph in Bob’s domain,
and hence the transfer fidelity, becomes increasingly sup-
pressed. With a disordered chain, the channel parameter
CB;�ðtÞ depends on both the time and the particular real-

ization of the disorder [that is, the specific values of the �j
and �j in (2) and (3), respectively]. However, for a given

P �, the specific values of �j (resp. �j) are probabilistic.

Thus, � � ��ðtÞ ¼ 1� CB;�ðtÞ is a stochastic function of

time, parameterized by �.

We have investigated this claim in more depth by nu-
merically evaluating ���ðtÞ for various values of t and �, for
the cases of both diagonal and off-diagonal disorder, and
for various disorder distributions P �. Since the outcome is
stochastic, we average over many trials in order to build up
a mean surface. This was found to have the empirical form

�� �ðtÞ � 1� e��tð�2þ��Þ (4)

for some constants � and �. Figure 2 shows the results for
diagonal disorder, with P � chosen to be the uniform
distribution. The same empirical form (4) was found to
hold for off-diagonal disorder, and for P � chosen to be
Cauchy and normal distributions, although of course the
quantitative details (the values of � and �) differed. Thus,

FIG. 1 (color online). Effect of localization on state propaga-
tion for a disordered Heisenberg chain with N ¼ 501, J ¼
1=

ffiffiffi
2

p
. The wave packets have been plotted at time increments

�t ¼ 25. Diagonal disorder was drawn from a normal distribu-
tion with mean zero and standard deviation �.

FIG. 2 (color online). Mean surface of �ðt; �Þ. Green: numeri-
cal data. Red: 1� e��tð�2þ��Þ, for � ¼ 2:56, � ¼ 0:029. Diago-
nal disorder drawn from a uniform distribution in the range [��,
�]. Similar results also hold for off-diagonal disorder.
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if we know the value of �, we can deduce how far Bob can
be from Alice before, on average, the fidelity drops below a
certain threshold. As expected, for fixed � the fidelity
decays exponentially quickly as the state propagates along
the chain.

The identification of a disordered spin chain as an am-
plitude damping channel (albeit one with a stochastic
damping parameter) immediately opens up the possibility
of using quantum error correction to improve the channel
fidelity. Alice can encode her message state into a state of
multiple qubits and send each of these qubits down a
separate, parallel, spin chain. Bob will then receive the
multiple qubits and apply standard error correction tech-
niques. Indeed, quantum codes specifically tailored to
treating amplitude damping errors are already known
[18]. However, if Alice and Bob are separated by a distance
larger than the localization length, the amplitude damping
will become too severe, and this procedure will fail.
However, we have the option of performing error correc-
tion at regular intervals (shorter than the localization
length) along the chain, intervening before the amplitude
damping becomes too great. Thus, as long as � is not too
large, error correction can be used to correct localization
errors and achieve high fidelity transfer over distances
much larger than the localization length. Furthermore, as
the wave packets propagate with a well-defined group
velocity, the transmission takes a time linear in the distance
over which we want to propagate.

The key result of this Letter is that this scheme is
scalable. That is, the number of parallel chains needed to
faithfully communicate a qubit grows favorably with the
distance we wish to send it. The proof of this is based on
the following protocol. (1) Alice encodes her initial qubit
in the space of n ¼ 5k qubits according to the 5 qubit code
[19] concatenated k times. (2) Each of these qubits is then
further encoded by Alice as a minimally dispersive wave
packet, and sent down a separate spin chain—modified via
a channel twirling process [20]—towards Bob. (3) At pe-
riodic intervals of distance L, the (distorted) wave packets
are decoded down to the space of 5k qubits, and error
correction is applied on these qubits. They are then reen-
coded back as wave packets to be sent another distance L
down the chain. This process is repeated (with twirling
applied to each section of length L of the chain) until the
wave packets reach Bob’s end of the chain, a distance mL
away, where m is an integer. (4) When the wave packets
reach Bob, he decodes them down to the space of 5k qubits,
and then further decodes these down to the space of a
single qubit, which he takes as the output of the channel.

Provided that the number of parallel chains n scales
polylogarithmically in the distance we wish to communi-
cate over, it is possible to send a qubit an arbitrary distance,
with arbitrarily high fidelity using this protocol. Let us look
at the protocol in more detail. We have seen that if Alice
sends a qubit, encoded as a wave packet, down a disordered

spin chain of length L to Bob, the chain behaves like an
amplitude damping channel with some damping parameter
�. Now suppose that Alice and Bob share, say, 5 identical
(uncoupled) spin chains which, for the moment, we assume
all have the same damping parameter (we will see how to
relax this restriction later). Consider the above protocol for
the case where k ¼ m ¼ 1 (i.e., Alice and Bob are sepa-
rated by a distance L, and use the 5 qubit code without
concatenation). If � is small enough, this results in the
qubit being communicated with a higher fidelity than
would have been achieved if only a single spin chain had
been used. By using 5k identical spin chains and concate-
nating the procedure k times, it is then possible to boost the
fidelity to become closer and closer to unity. However,
obtaining an analytic expression for the fidelity as a func-
tion of the degree of concatenation is complicated by the
fact that the 5 qubit code does not preserve the structure of
amplitude damping channels. In other words, the above
procedure is not equivalent to sending a qubit down an
effective amplitude damping channel with reduced damp-
ing parameter. Fortunately, conjugating any quantum chan-
nel by a random single-qubit Clifford operation (i.e.,
operations from the normalizer of the Pauli group)—a pro-
cess known as channel twirling [20]—turns that channel
into a depolarizing channel, whose structure is preserved
by the 5 qubit code. For an amplitude damping channel
with parameter �, the twirling results in a depolarizing
channel with parameter p ¼ ½�þ 2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p Þ�=3. If

each of the depolarizing channels has the same parameter
p, it is simple to calculate that the above procedure is
equivalent to sending a single qubit down an effective de-
polarizing channel with parameter p1, where p1 is strictly
less than 15

2 p
2. Concatenating the procedure k times pro-

duces a depolarizing channel with parameter pk <
2
15 �

ð152 pÞ2
k
.

We can view the entire concatenated procedure as send-
ing a qubit down a block of 5k spin chains, each of length
L. If Alice and Bob are now separated by a distance mL,
they can compose m of these blocks together, one after
another, to form a longer block of total length mL. Each
constituent sub-block is a depolarizing channel with pa-
rameter pk, and it follows that the composition of m such
channels is itself a depolarizing channel with parameter
ptotal ¼ 1� ð1� pkÞm, which is bounded by

ptotal < 1�
�
1� 2

15

�
15

2
p

�
2k
�
m
: (5)

Provided that p < 2=15 and the number of chains scales
polylogarithmically with m as

n ¼ 5k �
�
ln
m

�

�
3
�
� ln

15p

2

��3
; (6)

where � > 0, and the tilde (�) indicates that n ¼ 5k can be
chosen to be the smallest power of 5 greater than or equal
to the right hand side of (6), we have that
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5k >

�
ln½ 215 ð1þ m

�Þ�
� ln15p2

�
log25

(7)

) 2k >

�
ln½152 ð1� e��=mÞ�

ln15p2

�
(8)

) ptotal < 1� e�� < �: (9)

Thus, provided that the parameter p of the fundamental
depolarizing channels is less than 2=15, we are free to
choose any m, arbitrarily large, and any �, however close
to zero, and the overall channel will have parameter
ptotal < �. The average fidelity of sending a qubit down
this channel is then f > 1� �=2. Since we require that
p < 2=15, given a degree of disorder �, we choose a value
of L such that this is true, at least with high probability. In
other words, the degree of disorder fixes the maximum
possible length of our sub-blocks, or equivalently, the
length before which we must error correct.

Let us make a number of observations. In this proof, we
assume that each channel has an identical error parameter.
This is, of course, an unreasonable assumption since the
errors are stochastic. However, the protocol still leads to
polylogarithmic scaling if, for example, the channels all
have error parameter p below some given threshold. An
interesting question for the future is to analyze how well
the protocol succeeds if one only knows the distribution of
channel parameters.

Although we have focused here on diagonal and off-
diagonal disorder, we reiterate that the same holds true
more generally, provided the disorder does not couple
subspaces of different numbers of excitations. It will be
realized that our protocol deals with rather more general
errors arising in quantum communication in spin chains
(e.g. decoherence) and not just those due to disorder.

From an experimental point of view, proposals have
been put forward for chains of superconducting qubits
[21,22] and trapped atoms [23] to be used as the spin chains
for quantum state transfer. Although the implementation of
our proposed scheme is technologically challenging, ma-
nipulations of this type are likely required in any future
quantum computing technology. Also, the individual ele-
ments that comprise our scheme have largely already been
implemented in a variety of experimental domains. In
particular, the 5 qubit code was implemented in [24], a
form of concatenated error correction was demonstrated
experimentally in [25], and channel twirling was recently
carried out in [26].

Finally, we observe that our results might be interesting
in the context of solid state physics. We have shown that
parallel disordered one-dimensional spin chains can sup-
port high fidelity ‘‘conduction’’ of quantum information

over arbitrary distances, the number of required chains
scaling only polylogarithmically with the distance. This
is perhaps at odds with the intuition one might have from
the fact that in one dimension, disorder inevitably prevents
propagation. Of course, there is no true contradiction here.
Our system is not strictly one-dimensional, but is quasi-
one-dimensional; the error correction leads to subtle cou-
pling of the separate chains. However, we believe that our
techniques from quantum information may offer new in-
sights into localization in solid state systems.
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