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A detailed microscopic analysis of the dynamic structure function Sðk; !Þ of a two-dimensional Bose

system of dipoles polarized along the direction perpendicular to the plane is presented and discussed.

Starting from ground-state quantities obtained using a quantum diffusion Monte Carlo algorithm, the

density-density response is evaluated in the context of the correlated basis functions (CBF) theory. CBF

predicts a sharp peak and a multiexcitation component at higher energies produced by the decay of

excitations. We discuss the structure of the phonon-roton peak and show that the Feynman and

Bogoliubov predictions depart from the CBF result already at low densities. We finally discuss the

emergence of a roton in the spectrum, but find the roton energy not low enough to make the system

unstable under density fluctuations up to the highest density considered that is close to the freezing point.

DOI: 10.1103/PhysRevLett.102.110405 PACS numbers: 03.75.Hh

The recent experimental achievements in trapping
clouds of dipolar atoms [1,2] have opened the possibility
of studying the static and dynamic properties of quantum
systems governed by long range dipolar interactions. In
particular, the realization of Bose-Einstein condensates
(BECs) of chromium atoms [3], which has a large magnetic
dipole moment, has stimulated great interest in understand-
ing the properties of dipolar quantum systems at ultralow
temperatures. In actual experiments conducted on BECs,
the dipolar interaction coexists with other two-body inter-
atomic potentials whose scattering length can be tuned by
exploiting Feshbach resonances. In the low density limit
the scattering length of the latter potential can take arbi-
trary values, and particularly it can be tuned to zero,
leaving the dipole-dipole interaction as the only relevant
potential. Additionally, polar gases are very rich from a
physical point of view since they present strong resem-
blances with other interesting condensed matter systems
such as superfluids or Mott insulators. Bilayer excitons [4]
and more recently polar molecules [5] can possess strong
dipole moments dominating their static and dynamic
properties.

The ground-state properties of a trapped condensate of
dipoles was analyzed in Ref. [6] at a mean-field level.
BECs of dipoles in cigar-shaped and pancake geometries
at finite temperatures where analyzed by means of the Path
Integral Monte Carlo method in Ref. [7]. Other, more
complex situations, where the scattering length varies
with the dipole moment, have also been analyzed [8].
Recent studies on infinite 2D systems of dipoles have
been carried out in an effort to understand the limiting
behavior of a BEC of dipoles in a pancake geometry where
the confinement in one direction is tight [9].

The anisotropy of the dipole-dipole interaction makes
the ground-state and excitation spectrum depend strongly
on the confining geometry [10–13]. In particular, the fact
that the dipole-dipole potential can be attractive or repul-

sive has a direct impact on the elementary excitation
spectrum, which can exhibit a roton minimum as happens
in other, strongly correlated systems like 4He. The roton
excitation described by mean-field is very different in
nature from the rotons in 4He where it is not a signature
of an instability due to attractive interaction, but rather a
consequence of the near-order induced by the strongly
repulsive core of the He-He interaction. For these systems
many-body theories capable of dealing with strong corre-
lations were developed long ago, both for homogeneous
[14–16] and inhomogeneous [17] phases. These theories
predict a spectrum �ðkÞ and a dynamic structure function
Sðk;!Þ that are more accurate and have a richer structure
than the ones provided by the Bjil-Feynman or Bogoliubov
approximations, which only predict delta peaks in the (k,
!) plane corresponding to single-quasiparticle modes of
infinite lifetime.
In this work we present a microscopic calculation of �ðkÞ

and Sðk;!Þ for an infinite two-dimensional system of
bosonic dipoles that are polarized along the direction per-
pendicular to the plane. The model Hamiltonian reads

H ¼ � @
2

2m

X
j

r2
j þ

Cdd

4�

X
i<j

1

jri � rjj3
(1)

with m the mass of the dipoles, frjg their position coordi-

nates and Cdd the coupling constant that depends on the
dipole moment. In the following we will use dimensionless
quantities, introducing a characteristic length scale r0 ¼
mCdd=ð4�@2Þ and a characteristic energy scale E0 ¼
@
2=mr20. We build on previous work by some of us [9],

where ground-state energies, pair distribution, and the
static structure factor SðkÞ were obtained in an essentially
exact form by diffusion Monte Carlo (DMC) simulations.
In the present work, we apply a formalism based on
correlated basis functions (CBF) [14], using DMC
ground-state results for SðkÞ as an input. The CBF formal-
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ism constitutes a framework for calculating dynamic prop-
erties of strongly correlated systems. In the present work
we use an implementation which can be derived by
Brillouin-Wigner perturbation theory [15].

The CBF formalism provides a model for the linear
response function from which Sðk;!Þ is obtained as

Sðk;!Þ ¼ � 1

�
Im

SðkÞ
@!� �FðkÞ � �ðk;!Þ þ i�

; (2)

with �FðkÞ ¼ @
2k2=2mSðkÞ the Bjil-Feynman spectrum

[18]. The self-energy term �ðk;!Þ contains all the infor-
mation about the response that is not present in the
Feynman mode,

�ðk;!Þ ¼ 1

2

Z dpdq

ð2�Þ3�
�ðkþ pþ qÞjV3ðk;p;qÞj2
@!� �FðpÞ � �FðqÞ þ i�

; (3)

where the matrix element V3ðk;p;qÞ, written in terms of
the direct correlation function XðkÞ ¼ 1� 1=SðkÞ, reads

V3ðk;p;qÞ ¼ @
2

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðpÞSðqÞ
SðkÞ

s
½k � pXðpÞ þ k � qXðqÞ

� k2u3ðk;p;qÞ�; (4)

which represents a three-phonon scattering vertex that
allows single excitations to decay into two. In this expres-
sion, u3ðk;p;qÞ is a ground-state triplet correlation that
has been taken to be the convolution approximation to its
optimal form [19]. From Eq. (2) we see that the spectrum
of elementary excitations �ðkÞ at fixed k can be obtained by
solving the equation @!� �FðkÞ � �ðk;!Þ ¼ 0 for @! ¼
�ðkÞ. CBF belongs to a family of theories predicting a real
valued spectrum �ðkÞ. If a solution exists (and thus
Im�ðk;!Þ ¼ 0), the CBF response shows a delta peak of
strength ZðkÞ at the energy @! ¼ �ðkÞ with ZðkÞ ¼
SðkÞj1� dRe�ðk;!Þ=d!j�1

!¼�ðkÞ the spectral weight of

the peak. A small but finite Im�ðk;!Þ leads to damping
(decay of excitations) seen as an homogeneously broad-
ened peak centered at �ðkÞ, which is obtained by solving
@!� �FðkÞ � Re�ðk;!Þ ¼ 0 in Sðk;!Þ. That is the case
for instance when the excitation spectrum �ðkÞ is mono-
tonically increasing and concave [�00ðkÞ> 0] [17], where
it is possible to conserve energy and momenta in the
scattering process of one excitation decaying in two.
Finally, if Im�ðk;!Þ is large (on the order of @!), we do
not get a well-defined dispersion anymore. Regions where
Im�ðk;!Þ is large are referred to as the multiexcitation
continuum. Note that if we set �ðk;!Þ ¼ 0, we obtain the
Feynman approximation for the dynamic structure func-
tion, Sðk;!Þ ¼ SðkÞ�ð@!� �FðkÞÞ. The CBF formalism
has been extensively applied to liquid 4He [20] and is
known to describe well most of the features of Sðk;!Þ.
Although not exact, �ðkÞ is a significant improvement over
the Feynman spectrum �FðkÞ. It is also important to point
out that, in CBF, Sðk;!Þ exactly fulfills the lowest order
energy-weighted sum rules [21].

Figure 1 shows a color-coded map of the dynamic
structure function on a logarithmic scale at four different
densities. We plot nr20Sðk;!Þ as a function of scaled en-

ergies @!=ðnr20Þ and scaled momenta k=n1=2 as we found in
Ref. [9] that all these quantities scale better with the
density. The inclusion of the CBF self-energy leads to a
dispersion �ðkÞ lower than the Feynman mode. The exci-
tation spectrum �ðkÞ is seen as a sharp peak in Fig. 1 for all
but the lowest density. We find that there is no decay for
these excitations of energy �ðkÞ [for the purpose of illus-
tration, Sðk;!Þ has been broadened by � ¼ 0:15E0 in
order to make the excitation easier to identify]. Most
notably, the �ðkÞ mode starts to exhibit a nonmonotonic
behavior as the density increases, thus forming a roton at
sufficiently high density. The CBF prediction of the roton
energy is significantly lower than the Feynman prediction.
We stress again that the formation of this roton is an effect
of the strong correlation in the plane rather than due to the
emergence of an instability of the system. In fact, 2D
rotons have been identified experimentally in neutron scat-
tering measurements on liquid 4He adsorbed on graphite
[17] and in aerogel and vycor [22]. For the rest of the Letter
we will refer to the �ðkÞ mode as the phonon-roton mode
also for low densities without roton.
Unlike the Feynman mode, the CBF mode does not have

the full spectral weight, ZðkÞ< SðkÞ, because Sðk;!Þ has,
in addition to the elementary excitation mode, also higher
energy features, as discussed below. For all densities, the
phonon-roton dispersion is eventually ‘‘absorbed’’
[ZðkÞ ! 0] into the continuum of Sðk;!Þ at sufficiently
large wave number k such that there is no well-defined
dispersion relation for higher k’s. For the highest density

FIG. 1 (color online). nr20Sðk;!Þ of a 2D system of dipoles at
four different densities. Notice that the CBF delta peak has been
broadened into a Lorentzian shape in order to make it easier to
identify. The green squares show the Feynman spectrum �FðkÞ.
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nr20 ¼ 26 shown in Fig. 1, the dispersion bends to a con-

stant value at about k=n1=2 ¼ 10, thus forming a plateau
before losing all spectral weight. Notice that this feature is
absent in the Feynman mode, which keeps its strength
ZðkÞ ¼ SðkÞ all along the curve (thus approaching 1 at
high k) and becomes the free excitation spectrum tðkÞ ¼
@
2k2=2m for large k. Such a plateau has been observed

experimentally for 3D 4He, where its energy is precisely
twice the roton energy which indicates that it decays into
two rotons. This interpretation is confirmed by the CBF
approximation, although quantitatively the plateau is situ-
ated at twice the roton energy in Feynman approximation.
This prediction can possibly be improved by including
fluctuations in the triplet correlation terms [23].

At energies above the phonon-roton dispersion, a multi-
excitation background emerges (seen as the red to orange
contributions in Fig. 1). Exciting the system at such high
energies leads to fast decay into two lower energy excita-
tions. However, at low density we still observe a disper-
sionlike feature, that is slightly broadened. Figure 2 shows
a plot of Sðk;!Þ at the (low) density nr20 ¼ 2�7 and for

k=n1=2 ¼ 6:4, very close to the scaled wave number of the
roton at higher density. The sharp peak at @!=E0 � 15
corresponds to the CBF phonon-roton mode �ðkÞ, (again
broadened slightly for better visibility), while the remain-
ing structure at higher energies is the multiexcitation con-
tribution. The position of the Feynman mode �FðkÞ and the
Bogoliubov mode �BðkÞ [24,25] [the latter in terms of the
s-wave scattering length of the interaction a ¼ expð2�Þr0
and the Euler constant � ¼ 0:5772 . . . ] [9],

�BðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@
2k2

2m

�
2 þ

�
@
2k

2m

�
2 16�n

j lnðna2Þj

s
; (5)

are shown with arrows. It can be clearly seen that despite
the low density, the Feynman and Bogoliubov modes differ
from each other and from the CBF prediction, which is
closer to the exact Sðk;!Þ. The difference between the
Feynman and Bogoliubov predictions are due to the fact
that the Bogoliubov spectrum can be seen as an approxi-
mation to the Feynman spectrum when the actual interac-
tion potential is replaced by a (density dependent) contact

interaction, while the Feynman excitation is an approxi-
mation to the CBF result when the self-energy term is
discarded. For the density and wave number considered
in Fig. 2, the maximum of the broad CBF peak has about
80% of the total spectral strength and is located between
the Feynman and Bogoliubov energies.
At the low density of Fig. 2, the multiexcitation contri-

bution predicted in CBF theory can be identified with the
Bogoliubov mode, because it is a well-defined, although
broad peak, consistent with a quasiparticle picture, at an
energy close to the Bogoliubov mode. As the density
increases, however, this peak loses spectral weight in favor
of the phonon-roton excitation. This is shown in Fig. 3 for
two momenta and several densities spanning the range
nr20 ¼ 2�14 to nr20 ¼ 28 (the later close to the freezing

density nr20 ¼ 290 [9]), where �BðkÞ and �FðkÞ are shown
with star and square symbols, respectively. Note that the
quasiparticle picture consistent with the Bogoliubov and
Feynman approximation only holds at low densities, and
that as soon as the density increases above some value
around nr20 ¼ 2�8, �BðkÞ and �FðkÞ depart from each other

and from the CBF prediction. At even higher densities the
Bogoliubov approximation does not apply anymore, as
much of the spectral strength shifts to the phonon-roton
branch while the multiexcitation component spreads over a
wider range of energies. Actually the bare Bogoliubov
spectrum �BðkÞ diverges at the value nr20 � 2�3:33, corre-

sponding to na2 ¼ 1 [see Eq. (5)]. On the other hand, the
physical interpretation of the Feynman mode changes as
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FIG. 2. nr20Sðk;!Þ for k=n1=2 ¼ 6:4 at the density nr20 ¼ 2�7.
The arrows point the position of the corresponding Bogoliubov
and Feynman peaks.
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FIG. 3. nr20Sðk;!Þ for the momenta k=n1=2 ¼ 3:0 and
k=n1=2 ¼ 6:4 (close to the roton wave number) as a function
of the energy (upper and lower panels, respectively). Different
lines represent increasing densities from bottom to top. The
lowest line corresponds to nr20 ¼ 2�14, the next one to nr20 ¼
2�12, the following to nr20 ¼ 2�10 and so on, up to the last one

where nr20 ¼ 28. Notice that Sðk; !Þ has been shifted upwards

with increasing density. The squares and stars show the Feynman
and Bogoliubov spectrum, respectively.
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nr20 increases, moving from the Bogoliubov quasiparticles

picture in the nr20 ! 0 limit to qualitatively describe the

phonon-roton peak. We have checked that analogous con-
clusions hold for other wave numbers, with the phonon-
roton peak and the multiexcitation component being closer
at low densities and decreasing wave number. Only in the
k ! 0 limit the Feynman and CBF approximations yield
the same dispersion, namely @kc, where c is the speed of
sound.We end the discussion by going back to the analysis
of the phonon-roton branch �ðkÞ as a function of the
density. Figure 4 shows the energy �ðkÞ of the CBF
phonon-roton mode at several densities. The spectrum of
elementary excitations is monotonically increasing for low
n until it develops a rotonlike minimum at a fairly high
critical density nr of the order of nrr

2
0 � 22. Surprisingly,

all curves seem to intersect at the same point, k=n1=2 � 5,
using our scaling of k. This point coincides with the point
at which the roton first emerges, taken as the k value at
which the phonon-roton line at the density nr has zero
slope. Notice also that not even at the highest density
considered nr20 ¼ 28, close to solidification, the roton ap-

proaches the zero energy axis, thus indicating that the 2D
system of dipoles analyzed is always stable under density
fluctuations in this phase.

To summarize, we have carried out a microscopic cal-
culation of the dynamic structure function of a gas of
dipoles in 2D using the formalism of correlated basis
functions. For that and as an input, we used ground-state
quantities obtained from a diffusion Monte Carlo simula-
tion of the system. The combination of the DMC method,
which is able to produce essentially exact results for the
ground state, and the CBF theory, which is a well-founded
microscopic theory of elementary excitations, allows for a
very accurate description of the dynamic response function
in a wide range of densities. We report predictions for the
phonon-roton branch that coincide with the Feynman and

Bogoliubov modes only at very low densities, pushing it
down to lower energies as nr20 increases. The CBF method

also predicts a multiexcitation component that is absent in
the other two approximations. We find that a roton emerges
at a density of about nr20 ¼ 22, and that the energy of the

roton decreases with increasing density, but not to the point
of making the system unstable against density fluctuations.
We are currently working on the extension of this study to a
pancake geometry using the inhomogeneous version of the
CBF theory and DMC simulations to study the stability in a
trap against collapse in a quantitatively accurate form.
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