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A viscoplastic continuum theory has recently been proposed to model dense, cohesionless granular

flows [P. Jop et al., Nature (London) 441, 727 (2006)]. We confront this theory for the first time with a

transient, three-dimensional flow situation—the simple collapse of a cylinder of granular matter onto a

horizontal plane—by extracting stress and strain rate tensors directly from soft particle simulations. These

simulations faithfully reproduce the different flow regimes and capture the observed scaling laws for the

final deposit. Remarkably, the theoretical hypothesis that there is a simple stress-strain rate tensorial rela-

tionship does seem to hold across the whole flow even close to the rough boundary provided the flow is

dense enough. These encouraging results suggest viscoplastic theory is more generally applicable to

transient, multidirectional, dense flows and open the way for quantitative predictions in real applications.
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A predictive theory for the flow of granular media
remains a major objective for the physics community
with industrial facilities handling granular materials oper-
ating well below design efficiency and destructive natural
phenomena such as snow avalanches, landslides and debris
flows difficult to safeguard against [1,2]. A central diffi-
culty is that the behavior of granular materials is not easily
classified as being either solid, liquid or gaslike with
multiple phases sometimes appearing simultaneously. In
particular, the solid-liquid regime where there is a dense
granular flow coexisting with a stopped solidlike deposit
remains a considerable modelling challenge. In industrial
(e.g., silo flow) and geophysical (e.g., avalanches) appli-
cations, the size of the constituent particles (��m)
means that thermal effects are completely negligible com-
pared to external forces such as gravity [1]. The dynamics
are then dominated by the inelastic collisions between
particles which involve highly nonlinear frictional forces.
As a further complication, there is typically no scale sepa-
ration between the microscopic (granular) dimension
and the length scales over which the flow varies. Not-
withstanding this, a viscoplastic continuum theory is start-
ing to emerge [3] for dense granular media built upon the
observations that a nonzero shear rate is needed to initiate
movement and, once moving, there is a complicated flow
dependence on the shear rate. At the heart of this theory is a
dimensionless inertial number, I which is a local ratio of a
macroscopic deformation time scale to an inertial time
scale [4]. Numerical simulations of a simple sheared cell
[5,6] had identified the importance of this quantity which
was subsequently realized to be also highly relevant to
other flows with a single shear plane [7]. Jop et al. [3]
then provided a multidimensional generalization by defin-

ing I :¼ j _�jd= ffiffiffiffiffiffiffiffiffi

P=�
p

and tensorializing the stress-strain
relationship to

�ij ¼ � _�ij; with � :¼ �ðIÞP=j _�j; (1)

where P is the isotropic pressure, j _�j :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
_�ij _�ij

q

is the

second invariant of the strain rate tensor _�ij :¼ ui;j þ uj;i,

ui;j is the jth derivative of the ith velocity component, d is

the particle diameter, � is the particle density, �ij :¼ �ij þ
P�ij is the deviatoric stress tensor (�ij being the stress

tensor), � is the viscosity and � a friction coefficient. By
solving the continuum equations with the rheology (1), Jop
et al. achieved predictions within 15% of actual flow
velocities for a steady, unidirectional granular flow sheared
in both cross-stream directions.
In this Letter, we confront this new theory with a tran-

sient three-dimensional situation where the flow is not
unidirectional to test its applicability to real flows of prac-
tical interest. The flow situation studied is the intriguingly
simple tabletop flow generated by a collapsing granular
cylindrical column [8,9]. This is a particularly good test
case because the initial condition is well defined, the sub-
sequent dynamics are rich, combining a number of differ-
ent flow regimes, and the flow duration is short enough that
realistic discrete element simulations (DEM) can be done
to calculate the stress and strain rates everywhere at any
given time.
The collapsing column experiment consists of releasing

a stationary cylinder of granules so that they fall and spread
out on a horizontal surface. If the aspect ratio a :¼ h0=r0
(h0 and r0 being the height and radius of the initial cylin-
der) of the column is small (&2), the collapse starts at the
column edge and propagates inwards either stopping be-
fore the top is totally eroded away (so the final maximum
height h1 ¼ h0) or eventually leading to a complete col-
lapse (h1 < h0). If a * 2, the column collapses instanta-
neously as a whole with three flow phases evident: (i), the
free-fall regime where the top of the cylinder falls ballis-
tically; (ii), a heap regime where moving grains flow over a
growing inclined stationary deposit; and (iii), shallow layer
regime where the motion is dominantly horizontal. Simple
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power laws exist for the runout, ðr1 � r0Þ=r0 � a1=2 [8,9],

and maximum height h1=h0 � a�1 [8] or �a�5=6 [9] of
the final deposit (see Fig. 1) with only the numerical
prefactors appearing material-dependent [10]. The obser-
vation h1 � h0=a ¼ r0 is particularly striking as this im-
plies that the final height becomes independent of the
initial height for a sufficiently tall starting column.
Efforts to explain these scalings have either concentrated
on shallow layer modeling [11–13] or two-dimensional
DEM (hard [14,15] and soft [16] particle).

Measuring pointwise stress and strain rates for this flow
in the laboratory is impractical so three-dimensional DEM
was carried out [17]. Up to 2� 105 monodisperse, cohe-
sionless, frictional, inelastic spheres of d ¼ 2 mm diame-
ter randomly packed into cylinders with aspect ratio
a 2 ½0:5; 20� were released over a roughened horizontal
plane on which a monolayer of the same spheres was
glued. The code used a Hertz-Mindlin theory to model
the contact physics of colliding (soft) spheres (see [18]
for details). The results were insensitive (see [15,18]) to the
coefficient of restitution e provided e is not too close to 1
so this was taken nominally as 0.5 whereas the coefficient
of (microscopic) friction�m was varied. Calculations were
mainly performed with initial radii of r0 ¼ 2 cm or 3.5 cm
implying a ‘‘granularity’’ of 10 or 17.5 spheres, respec-
tively, across a radius compared to *50 in experiments.
Figure 1 shows that the DEM captures the same scaling
laws as seen in experiments, with the r0 ¼ 3:5 cm data

having a slightly larger runout prefactor than the r0 ¼
2 cm data. This discrepancy is well within the experimen-
tal data spread but is significant compared to the variability
of repeated ‘‘identical’’ numerical experiments (the col-
umns were filled by randomly dropping granules from a
fixed height). Two tests for larger values of r0 (r0 ¼ 6 cm,
a ¼ 1 and r0 ¼ 7:5 cm, a ¼ 0:5), however, reproduced
the r0 ¼ 3:5 cm runout data, indicating that, at least for
small a, the effects of granularity on the collapse are lost
within the numerical error bars at this r0. Figure 2 shows a
typical collapse for a ¼ 5 calculated using DEM. An
intermediate flow state is characterized by its upper mov-
ing free surface and the lower static interface which delin-
eates the growing deposit. The three phases of the flow are
illustrated in Fig. 3, where the free-fall regime (i) is char-
acterized by growing vertical kinetic energy, the heap-flow
regime (ii) by the conversion of vertical to radial kinetic
energy and the shallow layer regime (iii) by the gradual
decline of the dominant radial kinetic energy.
The viscoplastic hypothesis (1) is made under the as-

sumption that the volume fraction is constant in the limit of
dense flows. As stress and strain rate tensors are extracted
directly from the collapsing compressible flow data [19],
we actually worked with the equivalent expression

�ij ¼ � _�c
ij where _�c

ij
:¼ _�ij � 1

3
_�ii�ij (2)

is simply the nonisotropic part of the rate-of-strain tensor.
To test this modified hypothesis (2), � and _�c were calcu-
lated over the flow domain at 5 to 10 different times during
a collapse and over collapses of various different aspect
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FIG. 1 (color online). Discrete element simulations and ex-
perimental data of the nondimensional runout ðr1 � r0Þ=r0 and
maximum final height (inset) as a function of a. Open symbols
correspond to numerical results for d ¼ 2 mm, r0 ¼ 2 cm (4)
and r0 ¼ 3:5 cm (�) (�m ¼ 0:5) and dots are experimental
results: data from Lajeunesse et al. [8] (dark/blue) and from
Lube et al. [9] (light/red). ([8] claims h1=h0 � a�1 whereas [9]
quote �a�5=6.) The symbol size of the numerical data indicates
the variability over repeated runs.
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FIG. 2 (color online). Granular pile and static interface evolu-
tion as a function of time in the (r, z) plane (a ¼ 5, r0 ¼ 3:5 cm,
�m ¼ 0:5) from DEM. Thick line corresponds to the final
deposit and the thin line is the initial configuration. An inter-
mediate profile is also shown at t ¼ 0:14 s to illustrate the
growing stationary deposit (dark/blue; height hs, radius rs) and
the flowing dense layer (light/red; height hf, radius rf). The inset

shows how these two heights and radii evolve over time (nor-
malized using the initial height H0 and radius r0).
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ratios. These were calculated using a standard coarse-
graining approach (Eq. 5, [20]) using a step function
weighting. Averages were calculated over tori around the
axis of symmetry with a 3d� 3d square cross-section in
the (r, z) plane. This was possible because the flow is
axisymmetric to a large degree (E�

k � Ez
k, E

r
k, see Fig. 3)

and meant that a significant number of particles contrib-
uted to the average at any one time. For a typical snapshot

of the flow, data were calculated at� 500 points in a (r, z)
grid (see Fig. 4) determined by ensuring a 50% overlap
between neighboring 3d� 3d boxes.
To test how close � and _�c were to being simple multi-

ples of each other, two estimators of � were used: j�j=j _�cj
where j�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 �ij�ij

q

is the second invariant (similarly for

_�c), and the ratio of the maximum shear component �r̂ ẑ to
_�c
r̂ ẑ where r̂ and ẑ are the appropriately transformed coor-

dinates (finding the orientation of the maximum shear was
a good but not infallible way to predict the local flow
direction). Only data for which the pressure exceeded 5%
of the maximum were used to exclude the initial free-fall
regime high in the column where the grains are not in
frictional contact with each other (see Fig. 4). Of the data
points which remained, the principal axes of � and _�c were
surprisingly well-aligned, 95% to within 10	. The mis-
alignment that does occur is invariably at the low-density
free surface and near low-speed regions (the axis of sym-
metry and the static-to-flowing interface): see Fig. 4. No
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FIG. 4 (color online). The grid over which data was collected
for t ¼ 0:14 s and a ¼ 5 (inset t ¼ 0:18 s). Symbol positions
indicate the centers of the 3d� 3d averaging boxes and the type
of symbol the misalignment angle 	 between the principal axes
of � and _�c; 	< 5	 crosses, 5	 <	< 10	 crosses with circles,
and 	> 10	 solid triangles. The pressure P < 0:05Pmax above
the black line and the blue ‘‘stopped’’ region is defined by the
threshold jvj< 0:05jvjmax where v is the speed.
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k
:¼ �N

n¼1
1
2mu2
;n, u
;n is the velocity

of the nth particle in the 
 ( ¼ r, � or z) direction for the run of
Fig. 2. N is the total number of particles, m is the mass of each
particle and g is gravity. Inset: same quantities but for a ¼ 1
where there is no free-fall regime I. [All quantities have been
nondimensionalized by the initial potential energy Epðt ¼ 0Þ].
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FIG. 5 (color online). � against I for 3 different times at a ¼ 5
(top: t ¼ 0:1 s green crosses, t ¼ 0:18 s red squares and t ¼
0:26 s blue dots with the remaining data at other times as small
black dots; data with	> 10	 indicated by black triangles) and 3
different geometries (bottom: a ¼ 1 red squares, a ¼ 5 green
crosses and a ¼ 8 blue dots). The curve is the best fit line of the
form (3) with �m ¼ 0:5. The maximum shear estimator for � is
used here but the plot is essentially the same using the second
invariant instead.

PRL 102, 108305 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 MARCH 2009

108305-3



misalignment was found near the boundary except at the
rapidly moving head which is also close to the free surface.

Figure 5 shows how � ¼ �j _�cj=P varied with I for
three different geometries and for three different times
for the same geometry. The collapse onto a best fit line

�ðIÞ ¼ �s þ�a ��s

I0=I þ 1
(3)

as suggested by unidirectional flow experiments [3,7,21] is
remarkable. There is clear evidence that not only is � ¼
�ðIÞ but that the behavior for steady unidirectional flows
carries over to unsteady, multidirectional flows. The theory
is expected to fail in the jamming limit (I ! 0) but no
indication of this breakdown is seen in the data. The func-
tional dependence of the macroscopic friction �, parame-
trized by (I0, �s, �a), on the microscopic friction �m (see
Fig. 6) is smooth and robust to whether j�j=j _�cj or the
maximum shear rate data is used. The values which emerge
for the parameters are also reassuringly close to those
found in experiments ([2]; �s � 0:4, �a � 0:7 and I0 �
0:3) and fairly robust against changing the bottom rough-
ness (the diameter of the glued-on particles was varied
from a ratio of 0.5 to 4 times that of the flowing spheres).

The general applicability of viscoplastic theory found
here is, frankly, a surprise given (a) the presence of a large
growing static-flowing interface, (b) the proximity of most
of the fast flow to the rough bottom boundary and (c) the
existence of a large free surface. Certainly the misalign-
ment between the principal axes of the local stress and
strain rate tensors is most likely to be significant in these
regions but still is never large (<20	 in the flowing re-
gions). The major obstacle to a simple local rheology is, of
course, nonlocal effects typified by the long range influ-
ence of boundaries. While this can be crucial for under-
standing steady flows [21], the extra presence of inertia in
the momentum balance for transient flows appears to con-
siderably reduce this influence.

The clear conclusion from this study is the ubiquity of
the simple stress-strain rate relationship advocated by a
simple viscoplastic continuum theory even in transient,
multidirectional flow. Moreover, this relationship appears
well fit with the experimental result for steady unidirec-
tional flows and holds even near rough boundaries. This
suggests that a simple viscoplastic modeling approach can
be used to quantitatively capture granular flow properties
(at least within 
10%) in real geophysical and industrial
applications.
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FIG. 6 (color online). The fitting parameters I0 (left), �a
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