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We study the proximity-induced superconducting correlations in a normal metal connected to a

superconductor when the interface between them is spin active and the normal metal is ballistic or

diffusive. Remarkably, for any interface spin polarization there is a critical interface resistance, above

which the conventional even-frequency proximity component vanishes completely at the chemical

potential, while the odd-frequency component remains finite. We propose a way to unambiguously

observe the odd-frequency component.
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Superconductivity and superfluidity are hallmarks of the
wavelike character of matter and manifest themselves in
vastly different systems, from ultracold dilute gases via
cold metals and fluids to extremely dense protonic and
neutronic matter. In all of these contexts, the symmetry
of the order parameter is of profound importance. Over the
past decades, the possibility of superconducting order pa-
rameters that change sign under a time-coordinate ex-
change of the two fermions comprising the Cooper pair
has emerged in addition to the by now well studied vari-
eties of orbital symmetries [1–5]. This so-called odd-
frequency superconductivity [6] is distinct from the tradi-
tional even-frequency pairing in the Bardeen-Cooper-
Schrieffer paradigm and may be induced by proximity
effects in hybrid structures of superconductors and mag-
nets [1].

In a broader context, proximity systems offer the pos-
sibility of controlling the physics of competing broken
symmetries. The fundamental heterostructure for study-
ing proximity-induced superconductivity is the
superconductor–normal-metal (SjN) bilayer, where the
normal metal or the interface may have magnetic proper-
ties. Among possible triplet pair correlations, in the diffu-
sive limit odd-frequency pairs are favored [7], whereas in
ballistic hybrid systems both odd- and even-frequency
amplitudes compete [3,4]. As all known superconductors
to date exhibit an even-frequency order parameter, the
observation of proximity-induced effects that are particular
to odd-frequency pairing would be of utmost interest.

There are two major difficulties associated with the
detection of the odd-frequency state in superconductor-
ferromagnet (SjF) bilayers. One is the usually short pene-
tration depth into the ferromagnetic region, limited by the
magnetic coherence length �F, much less than the super-
conducting coherence length �S [1]. Another problem is
that odd-frequency pairs are only well defined when even-

frequency correlations vanish in the ferromagnet. Clear-cut
signatures of the former are therefore accessible only in a
limited parameter regime [8].
The majority of work on superconducting proximity

structures so far has been restricted to the diffusive limit
and spin-inactive interfaces [9]. For a nonmagnetic bilayer,
a minigap appears in the density of states of the normal
metal. It scales with the Thouless energy of the normal
layer and with the transmission probability of the interface.
Such minigap structures are readily accessible experimen-
tally [10]. For a spin-active interface, the transmission
properties of spin- " and spin- # electrons into a metal are
different, and this gives rise to both spin-dependent con-
ductivities and spin-dependent phase shifts at the interface
[11–15]. In this Letter, we show that a spin-active interface
in an SjN bilayer produces clear signatures of purely odd-
frequency triplet pairing amplitudes that can be tested
experimentally.
We consider the system shown in Fig. 1. The supercon-

ductor is conventional (even-frequency s-wave), while the
interface is magnetic. We find that there is a dramatic
change in the nature of proximity correlations when the
spin-dependent phase shifts exceed the tunneling probabil-
ity of the interface. The spin-active interface in an SjN
bilayer causes the even-frequency correlations to vanish at
zero excitation energy, while odd-frequency correlations
appear. At the same time, the minigap, one of the hallmarks
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FIG. 1 (color online). Proposed experiment for observation of
the odd-frequency component in a diffusive NjS junction.
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of the conventional proximity effect, is replaced by a low-
energy band with an enhanced density of states. We focus
on the density of states (DOS) in the normal region, which
can be probed by tunneling experiments. Our findings
suggest that it should be possible to detect the odd-
frequency amplitude without any interfering effects of
even-frequency correlations. Since the exchange field is
absent in the normal metal, this resolves the two main
difficulties associated with the experimental detection of
odd-frequency correlations mentioned above.

We adopt the quasiclassical theory of superconductivity
[16], where information about the physical properties of
the system is embedded in the Green’s function. For equi-
librium situations, it suffices to consider the retarded
Green’s function ĝ that is parameterized conveniently in
the normal (N) region by a parameter ��, allowing for both
singlet and triplet correlations [8]. In the superconducting
(S) region, we employ the bulk solution ĝS ¼ c�3 � �0 þ
s�1 � ði�2Þ, with c ¼ coshð�Þ, s ¼ sinhð�Þ, and � ¼
arctanhð�="Þ, �i and �i being Pauli matrices in particle-
hole and spin space, respectively.

We use the formalism described in Ref. [8] and consider
first the diffusive limit. Then the orbital symmetry for all
proximity amplitudes is reduced to s-wave, and hence the
singlet component always has an even-frequency symme-
try while the triplet component has an odd-frequency
symmetry. The Green’s functions are subject to boundary
conditions, which assume at the SjN interface in the tun-
neling limit the form [13,15] 2�dĝN@xĝN ¼ ½ĝS; ĝN� þ
iðG�=GTÞ½�0 � �3; ĝN� and at the outer surface read

@xĝN ¼ 0̂. Here � ¼ RB=RN , where RB (RN) is the resist-
ance of the barrier (normal region), and d is the width of
the normal region, while GT is the junction conductance in
the normal state. The boundary condition above contains
an additional term G� compared to the usual nonmagnetic

boundary conditions in Ref. [9]. This term is due to spin-
dependent phase shifts of quasiparticles being reflected at
the interface. G� may be nonzero even if the transmission

GT ! 0, corresponding to a ferromagnetic insulator [13].

We define the superconducting coherence length �S ¼ffiffiffiffiffiffiffiffiffiffiffi
D=�

p
and Thouless energy "Th ¼ D=d2, where D is the

diffusion constant, and assume that the inelastic scattering
length lin is sufficiently large, such that d � lin.

The Usadel equation [17] reads D@2x�� þ 2i" sinh�� ¼
0, with boundary condition �d@x�� ¼ ðcs� � �sc�Þ þ
i�s�

G�

GT
at x ¼ 0 and @x�� ¼ 0 at x ¼ d. Here c� ¼

coshð��Þ and s� ¼ sinhð��Þ. For " ¼ 0 we find pairing
amplitudes that are either purely (odd-frequency) triplet for
jG�j>GT ,

fsð0Þ ¼ 0; ftð0Þ ¼ GTsgnðG�Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

� �GT
2

q
; (1)

or purely (even-frequency) singlet for jG�j<GT ,

fsð0Þ ¼ iGT=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GT

2 �G2
�

q
; ftð0Þ ¼ 0: (2)

Thus, the presence of G� induces an odd-frequency com-

ponent in the normal layer. The remarkable aspect of Eqs.
(1) and (2) is that they are valid for any value of the width d
below the inelastic scattering length and for any interface
parameter �. Thus, the vanishing of the singlet component
is a robust feature in SjN structures with spin-active inter-
faces, as long as jG�j>GT . Without loss of generality, we

focus on positive values of G� from now on.

The DOS is given as Nð"Þ=N0 ¼ P
�Refc�g=2, yielding

Nð0Þ=N0 ¼ RefG�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

� �GT
2

q
g. At zero energy, the

DOS vanishes when G� < GT , which means that the usual

minigap in SjN structures survives. However, the zero-
energy DOS is enhanced for G� > GT since the singlet

component vanishes there.
The full energy dependence of the DOSmay be obtained

only numerically. To model a realistic experimental setup,
we fix � ¼ 10 and d=�S ¼ 1:0, although our qualitative
results are independent of these particular choices. As a
measure of the relevant energy scale, we define "0 ¼
"Th=ð2�Þ. The results are shown in Fig. 2 to investigate
the effect of the spin-dependent phase shifts. The low-
energy DOS is strongly enhanced due to the odd-frequency
amplitude when G�=GT > 1 (G�=GT ¼ 1:5 in the figure).

Conversely, the DOS develops a minigap around " ¼ 0
when G�=GT < 1 (G�=GT ¼ 0:5 in the figure). The ratio

G�=GT depends on the microscopic barrier properties

[15]. In the tunneling limit, one finds that G� can be

considerably larger than GT .
We suggest the following qualitative explanation for the

mechanism behind the separation between even- and odd-
frequency correlations. The superconductor induces a min-
igap / GT in the normal metal, while the spin-active
barrier induces an effective exchange field / G�. The

situation in the normal metal then resembles that of a
thin-film conventional superconductor in the presence of
an in-plane external magnetic field [18], with the role of the
gap and field played by GT and G�, respectively. In that

FIG. 2 (color online). The singlet and triplet proximity ampli-
tudes induced in the normal metal are shown for G�=GT < 1 [in

(a) and (c)] and G�=GT > 1 [in (b) and (d)]. In (e), we plot the

energy-resolved DOS for several values of G�=GT . Finally, (f)

shows the zero-energy DOS as a function of GT=G�, with the

proximity amplitudes shown in the inset.
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case, it is known that superconductivity is destroyed above
the Clogston-Chandrasekhar limit [19], as the spin-singlet
Cooper pairs break up. In the present case, we observe
coexistence of the exchange field and spin-singlet even-
frequency superconductivity as long as G� is below the

critical value of G� ¼ GT . At the critical point, the DOS

varies as 1=
ffiffiffiffiffiffij�jp

and diverges at � ¼ 0. However, forG� >

GT spin-singlet pairing is no longer possible at the chemi-
cal potential. It is then replaced by spin-triplet pairing,
which must be odd in frequency due to the isotropization
of the gap in the diffusive limit. Thus, there is a natural
separation between even-frequency and odd-frequency
pairing in the normal metal at a critical value of the
effective exchange field G�.

The same effect occurs in the ballistic limit, as we now
show. In this case, we can obtain the retarded Green’s
function using the formalism described in Refs. [14,20].
The Eilenberger equation in the normal region reads

ivFx@xĝþ ½"�3 � �0; ĝ� ¼ 0̂. For the boundary condi-
tions, we use a scattering matrix describing the magnetic
interface between the superconductor and the normal metal

Ŝ ¼ rS � expði2#S�3Þ tSN � expði2#SN�3Þ
tNS � expði2#NS�3Þ �rN � expði2#N�3Þ

 !
; (3)

with real reflection and transmission spin matrices rS, rN ,
tSN , and tNS. The spin mixing angles #S, #N , #SN , and #NS

describe spin-dependent scattering phases [11]. Neglecting
spin flip scattering, the transmission and reflection ampli-
tudes are diagonal in spin space, and the relations rS ¼
rN � diag½r"; r#�, tNS ¼ tSN � diag½t"; t#�, r2" þ t2" ¼ r2# þ
t2# ¼ 1, and #NS þ #SN ¼ #S þ #N follow from the uni-

tarity of Ŝ. Possible scalar phases are omitted in Eq. (3), as
they play no role in the final results.

We next concentrate on subgap energies. The anomalous
amplitudes can be decomposed into singlet and triplet
components: f ¼ ðfs þ ft�3Þði�2Þ. Defining f� ¼ ðfs þ
�ftÞ=2, we obtain on the top of the normal overlayer

(x ¼ d) f�ð"Þ ¼ �sgnð��Þt"t#=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
� � ðt"t#Þ2

q
, with �� ¼

sinð2"d=vFx þ #�þÞ þ r"r# sinð2"d=vFx þ #��Þ. Here

#�� ¼ �
2 ð#N � #SÞ � arcsinð"=�Þ, and " has to be sup-

plemented by an infinitesimally small positive imaginary
part. The interface parameters and the Fermi velocity
component in the x direction vFx ¼ vF cosc depend on
the impact angle c . The relevant energy scale in the
problem is the ballistic Thouless energy "Th ¼ vF=2d.
As we will show below, the DOS is nonzero only for
j��j> t"t#, which for a sufficiently large impact angle

always is fulfilled. Clearly, the most interesting regime
concerns "="Th � j#��j � t"t#.

In the tunneling limit, for small excitation energies
"="Th � 1 and small spin mixing angles #��, we obtain
�� ¼ ð4"d=vFx þ �#NÞ. In this case, due to #�þ þ
#�� ¼ �#N, only the spin mixing angle for reflection at
the normal side of the interface enters and acts as an

effective exchange field b ¼ #NvFx=4d on the quasipar-
ticles. Especially interesting is the case " ¼ 0, for which
all proximity amplitudes are even in momentum. For " ¼ 0
we obtain �� ¼ �#N , and the pairing amplitudes are
either purely (odd-frequency) triplet for j#Nj> t"t#,

fsð0Þ ¼ 0; ftð0Þ ¼ �t"t#sgnð#NÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2
N � ðt"t#Þ2

q
; (4)

or purely (even-frequency) singlet for j#Nj< t"t#,

fsð0Þ ¼ it"t#=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt"t#Þ2 � #2

N

q
; ftð0Þ ¼ 0: (5)

Comparing with the results for the diffusive case, we find
that G�=GT corresponds to �#N=ðt"t#Þ.
In Fig. 3, we show results for the proximity amplitudes

in the ballistic limit and focus on positive values of #N

without loss of generality. A systematic expansion of all
terms in the tunneling probability shows that in the tunnel-
ing limit the spin dependence of the transmission proba-
bilities can be neglected, and only that of the phase shifts
needs to be kept. Thus, we assume t" ¼ t# ¼ t. We model

the dependence on the impact angle c as tð	Þ ¼ ðt0Þ1=	,
	 ¼ cosc , and assume for simplicity spin mixing angles
independent of 	. The tunneling probability for normal
impact is T0 ¼ t20. In the case T0 <#N at small energies,

the odd-frequency triplet amplitude dominates, and it is the
only nonzero amplitude at " ¼ 0. On the other hand, for
T0 >#N both singlet and triplet amplitudes contribute.
This is due to the fact that for large impact angles the
transmission probability tð	Þ2 drops below the value for
the spin mixing angle #N .
We turn now to the DOS. The general expression, as-

suming the bulk solution in the superconductor, is

Nð"Þ=N0 ¼ Re
P

�¼�1

R
1
0 j��j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
� � ðt"t#Þ2

q
d	: In the

FIG. 3 (color online). Momentum-averaged proximity ampli-
tudes at the surface of the normal layer. Parameters: d ¼ vF=�
and T0 ¼ 0:1 (see text). (a),(c) #N ¼ #S ¼ 0:05< T0; (b),
(d) #N ¼ #S ¼ 0:15> T0. Energy units are "0 ¼ T0"Th. Even-
frequency singlet components are shown in (a)–(b) and odd-
frequency triplet components in (c)–(d).
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tunneling limit, this simplifies again, and, provided that
j#Nj> t"t# for all impact angles, the DOS at the Fermi

level is enhanced above its normal-state value Nð0Þ=N0 ¼R
d	j#Nj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2
N � ðt"t#Þ2

q
.

In Fig. 4, we show results for the DOS. In Figs. 4(a) and
4(b), we assume the dependence on the impact angle as
above, whereas in Figs. 4(c) and 4(d), we allow tunneling
only in a narrow tunneling cone of 10	. The DOS for the
cases of dominating triplet amplitudes and dominating
singlet amplitudes differ qualitatively. In the case of a
tunneling cone, this difference is most drastic, and a com-
parison with the results above shows that it is very similar
to the diffusive case. In the right panels, where #N ¼ #S ¼
0:2, we demonstrate that for T0 < 0:2 only the odd-
frequency triplet amplitude is present at the chemical
potential, while the singlet amplitude is zero. The corre-
sponding zero-energy DOS is enhanced in this region,
whereas it is reduced in the region when singlet correla-
tions are present at " ¼ 0.

The simplest experimental manifestation of the odd-
frequency component is a zero-energy peak in the DOS
[21–23]. In SjF layers, where this phenomenon has been
discussed, a clear peak at zero energy is often masked by
the presence of singlet correlations fs, which tend to sup-
press the DOS at low energy. This is not so in the system
we consider, provided T0 < j#Nj in the ballistic limit or,
equivalently, GT < jG�j in the diffusive limit. This is ideal

for an observation of the odd-frequency component, man-
ifested as a zero-energy peak in the DOS.

The important factor with regard to isolation of the odd-
frequency correlations at zero energy is the interface. The
even-frequency correlations vanish when the interface
transmission T0 is sufficiently low. The parameters #N

or, equivalently, G� can be increased by increasing the

magnetic polarization of the barrier separating the super-
conducting and normal layers. By fabricating several
samples with progressively increasing strength of magnetic
moment ~	 of the barrier, one should be able to observe an
abrupt change at the zero-energy DOS above a certain
strength of ~	. Alternatively, one could alter T0 by varying
the thickness of the insulating region.
In summary, we have investigated the proximity effect in

a SjN bilayer with a spin-active interface. We find that, in
both the ballistic and diffusive limits, the even-frequency
correlations may vanish at zero energy, while odd-
frequency correlations persist. This result is independent
of the specific values for the layer thicknesses and barrier
resistances, indicating that it is a robust and general feature
of spin-active interfaces. Our findings suggest a way of
obtaining unambiguous experimental identification of
superconducting odd-frequency correlations.
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FIG. 4 (color online). (a) DOS as a function of energy at the
top of the normal layer for fixed transmission probability T0 ¼
0:1 and various values of #N ¼ #S. The remaining parameters
are as in Fig. 3. (b) DOS and proximity amplitudes at " ¼ 0 for
#N ¼ #S ¼ 0:2 as a function of T0. In (c) and (d), we show the
results corresponding to (a) and (b) when assuming an (abrupt)
tunneling cone with an opening angle of 10	.
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