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The process of coherent creation of particle-hole excitations by an electric field in graphene is

quantitatively described. We calculate the evolution of the current density, number of pairs, and energy

after switching on the electric field. In particular, it leads to a dynamical visualization of universal finite

resistivity without dissipation in pure graphene. We show that the dc conductivity of pure graphene is �
2

e2

h

rather than the often cited value of 4
�

e2

h . This value coincides with the ac conductivity calculated and

measured recently at optical frequencies. The effect of temperature and random chemical potential

(charge puddles) are considered and explain the recent experiment on suspended graphene. A possibility

of Bloch oscillations is discussed within the tight binding model.
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Introduction.—It has been demonstrated recently that a
graphene sheet, especially one suspended on leads, is one
of the purest electronic systems. Electronic mobility
reaches values of 2� 105 cm2=ðVsÞ and might be yet
improved [1,2] indicating that transport in samples of
submicron length is most likely ballistic. In a simplified
model of a single graphene sheet (neglecting scattering
processes and electron interactions) the chemical potential
is located right between the valence and conductance bands
and the Fermi ‘‘surface’’ consists of two Dirac points of the
Brillouin zone [3]. A lot of effort has been devoted to the
question of transport in pure graphene due to the surprising
fact that the dc conductivity is finite without any dissipa-
tion process present. Awidely accepted value of the ‘‘mini-
mal conductivity’’ at zero temperature,

�1 ¼ 4

�

e2

h
; (1)

was calculated very early on using the Kubo formula in a
simplified Dirac model as well as in the tight binding
model [3–6]. Within this approach one starts with the ac
conductivity and takes a zero frequency limit typically
with certain ‘‘regularizations’’ (like finite temperature,
disorder strength �, etc.) made and removed at the end
of the calculation. As noted by Ziegler [7] the order of
limits makes a difference and several other values different
from �1 were provided for the same system. The standard
value �1 is obtained using a rather unorthodox procedure
when the dc limit ! ! 0 is made before the zero disorder
strength limit � ! 0 is taken. If the order of limits is
reversed one obtains [7]

�2 ¼ �

2

e2

h
: (2)

When the limit is taken holding ! ¼ � one can even

obtain a value of �3 ¼ � e2

h [7], thus solving the ‘‘missing

�’’ problem. Indeed, at least early experiments on gra-
phene sheets on Si substrates provided values roughly 3

times larger than �1 [8]. Recent experiments on suspended
graphene [2] demonstrated that the dc conductivity is
lower, 1:7�1, as temperature is reduced to 4 K. There is
no accepted experimental value for the dc minimal con-
ductivity. Hence one still faces the question of what is the
proper theoretical value at both zero and finite temperature.
Since the conductivity of clean graphene in the infinite
sample is a well-defined physical quantity there cannot be
any ambiguity as to its value.
In contrast both the experimental and the theoretical

situation for the ac conductivity in the high frequency limit
is quite different. The theoretically predicted value in the
Dirac model is �2 independent of frequency under condi-
tion ! � T=@ [5,9]. The Dirac model becomes inappli-
cable when ! is of order of �=@ ¼ 4� 1015 Hz or larger,
where � ¼ 2:7 eV is the hopping energy of graphene. It
was shown theoretically using the tight binding model and
experimentally in [10] that the optical conductivity at
frequencies higher or of order �=@ becomes slightly larger
than �2. Moreover, in light transmittance measurements at
frequencies down to 2:5� 1015 Hz it was found equal to
�2 within 4%. The model does not contain any other time
scale capable of changing the limiting value of ac con-
ductivity all the way to ! ! 0. Therefore one would
expect that the dc conductivity even at zero temperature
is �2 rather than �1. As we show in this note this is indeed
the case.
The basic physical effect of the electric field is a coher-

ent creation of electron-hole pairs mainly in the vicinity of
the two Dirac points and subsequent alignment of the
created quasiparticles with the direction of electric field
(holes) and the opposite one (electrons). The absolute value
of velocity does not change similar to ultrarelativistic
fermions like neutrino. To effectively describe this process
we develop a dynamical approach to charge transport in
clean graphene using the ‘‘first quantized’’ approach to pair
creation physics similar to that used in relativistic physics
[11]. To better visualize the phenomenon of resistivity
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without dissipation, we describe an experimental situation
as closely as possible by calculating directly the time
evolution of the electric current after switching on an
electric field. In this way the use of a rather formal Kubo
or Landauer [12] approach is avoided and as a result no
regularizations are needed. The effects of temperature and
of charge fluctuations or ‘‘puddles’’ are investigated and
explain the temperature dependence of conductivity mea-
sured recently in suspended graphene [2]. Although we
consider an infinite sample the dynamical approach allows
us to obtain qualitative results for finite samples by intro-
ducing time cutoffs like ballistic flight time. Various other
factors determining transport can be conveniently charac-
terized by time scales like the relaxation time for scattering
of phonons or impurities.

Time evolution of the current density at zero tempera-
ture.—Electrons in graphene are described sufficiently well
by the 2D tight binding model of nearest neighbor inter-
actions [3], namely, with (second quantized) Hamiltonian
being summed over all the links connecting sites on two
triangular sublattices A, B. The Hamiltonian in momentum
space is

Ĥ ¼
Z
BZ

cyA cyB
� �

H
cA
cB

� �
; H ¼ 0 h

h� 0

� �
; (3)

where hðkÞ ¼ ��
P

�e
ik��� with � being the hopping en-

ergy, �1 ¼ a
3 ð0;

ffiffiffi
3

p Þ; �2;3 ¼ a
3 ð� 3

2 ;�
ffiffi
3

p
2 Þ are the locations

of nearest neighbors on the honeycomb lattice separated by

distance a ’ 3 �A. In the Brillouin zone of the lattice there
are two Dirac points K� ¼ 2�

a ð13 ; 1ffiffi
3

p Þ, Kþ ¼ 2�
a ð23 ; 0Þ in

which the energy gap between the valence and the con-
duction band vanishes. Expansion around K�, hðkÞ ¼
"vg expð�i �3Þð�kx þ i�kyÞ, where the graphene velocity

is vg ¼
ffiffi
3

p
2

a�
" , leads to relativistic equations for the Weyl

field constructed as c 1 ¼ cW
1 , c 2 ¼ e�ið�=3ÞcW

2 .

Let us first consider the system in a constant and homo-
geneous electric field along the y direction switched on at
t ¼ 0. It is described by the minimal substitution p ¼
"kþ e

cA with vector potential (choosing a gauge in which

the scalar potential is zero) A ¼ ð0;�cEtÞ. Since the
crucial physical effect of the field is a coherent creation
of electron-hole pairs mostly near Dirac points a conve-
nient formalism to describe the pair creation is the ‘‘first
quantized’’ formulation described in detail in [11]. The
second quantized state at T ¼ 0 which evolves from the
zero field state in which all the negative energy (�jhðkÞj)
states are occupied is uniquely characterized by the first
quantized amplitude

c kðtÞ ¼ c k1ðtÞ
c k2ðtÞ

� �

obeying the matrix Schrödinger equation i"@tc ¼ Hc in
sublattice space with the initial condition

c kðt ¼ 0Þ ¼ uk; uk ¼ 1ffiffiffi
2

p 1
�h�=jhj

� �
: (4)

Here uk is found as a negative energy solution of the time
independent Schrödinger equation prior to switching on
the electric field, Huk ¼ �jhjuk.
A physical quantity is usually conveniently written in

terms of c . For example the current density (multiplied by
factor 2 due to spin) is

Jy ¼ �2e
Z
BZ

c y
k ðtÞ

@HðpÞ
@py

c kðtÞ (5)

To first order in electric field c k ¼ eði="Þjhjtðukþ
E�k þ . . .Þ and consequently Jy ¼ J0 þ E�, where

J0 ¼ � 2e

"

Z
BZ

uyk
@HðkÞ
@ky

uk ¼ 2e

"

Z
BZ

@jhj
@ky

;

�ðtÞ ¼
Z
BZ

�kðtÞ;

�kðtÞ ¼ � 2e

"

�
uyk

@HðkÞ
@ky

�k þ �y
k

@HðkÞ
@ky

uk

� e

"
tuyk

@2HðkÞ
@k2y

uk

�
:

(6)

The solution of the Schrödinger equation for the correction
�k is

�k ¼ ie

2"2
t2
@jhj
@ky

uk þ ie

8jhj3
�
h�

@h

@ky
� cc

�

�
�
1� e�2ijhjt=" � 2ijhj

"
t

�
vk; (7)

where

vk ¼ 1ffiffiffi
2

p 1
h�=jhj

� �
:

Substituting this into Eq. (6) the conductivity becomes

�kðtÞ ¼ e2

"

�
� @2jhj

@k2y

2t

"
� 1

4jhj4
�
h�

@h

@ky
� cc

�
2

� sin

�
2jhj
"

t

��
: (8)

The zero field current J0 and the first term (linear in time)
in the conductivity vanish upon integration over the
Brillouin zone, since one can choose it to be

R
BZ ¼R�=a

��=a dkx
R2�=ð31=2aÞ
�2�=ð31=2aÞ dky and the integrand is a derivative

of a periodic function.
The integral of the second part (oscillatory in time) of

�kðtÞ gives the result shown in Fig. 1. After an initial in-
crease over the natural time scale t� � "=� ¼
2:5� 10�16 s, it approaches �2, Eq. (2), via oscillations.
The amplitude of oscillations decays as a power
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�

�2
¼ 1þ sinð2t=t�Þ

2t=t�
(9)

for t � t�. The limiting value is dominated by contribu-

tions from the vicinity of the two Dirac points in the
integral of Eq. (6). The contribution of a Dirac point is
obtained for t � t� by integrating to infinity (in polar

coordinates centered at the Dirac point)

�

2
¼e2

"

1

ð2�Þ2
Z 2�

’¼0

Z 1

q¼0
sinð’Þ2 sinð2vgqtÞ

q
¼e2

h

�

4
; (10)

does not influence the result.
A physical picture of this resistivity without dissipation

is as follows. The electric field creates electron-hole ex-
citations in the vicinity of the Dirac points in which ex-
citations are massless relativistic fermions. For such
particles the absolute value of the velocity is vg and cannot

be altered by the electric field and is not related to the wave
vector k. On the other hand, the orientation of the velocity
is influenced by the applied field. The electric current is ev,
thus depending on orientation, so that its projection on the
field direction y is increased by the field. The energy of the
system (calculated in a way similar to the current) is
increasing continuously if no channel for dissipation is
included. Obviously at some time the system goes beyond
linear response into Bloch oscillations which are briefly
discussed below. We have performed a similar calculation
for the evolution of the current density for an ac electric
field switched on at t ¼ 0. After a short transient one
obtains the value of the dc conductivity �2 independent
of frequency. This is consistent with both the Kubo formula
derivations [9] and optical experiments [10].

The temperature dependence and effect of charge ‘‘pud-
dles’’.—At finite temperature T within the first quantized

formalism one adds the contributions of all the energies
including positive ones weighted with the Boltzmann fac-
tor. Because of electron-hole symmetry the contribution to
conductivity of a positive energy state with momentum k is
minus that of the contribution of the negative energy state
with the same wave vector. This results in the thermal
factor

�TðtÞ ¼
Z
BZ

tanh

�jhj
T

�
�kðtÞ: (11)

The first term still vanishes, while the second gives a
depressed value compared to that at T ¼ 0, see Fig. 1.
Moreover, the conductivity vanishes at the large time limit.
This is easy to appreciate qualitatively: the contributions
from the vicinity of the Dirac points, jhj � T, which were
the main contributors to �ðTÞ are effectively suppressed.
Physically this suppression can be understood as follows.
As mentioned above the finite resistivity of pure graphene
is due to pair creation by an electric field near Dirac points.
The pair creation is maximal when in the initial state the
valence band is full and the conductance band is empty.
Thermal fluctuations create pairs as well. In the formalism
we adopted the finite temperature initial state is described
by the density matrix which specified the number of inco-
herent pairs present in the energy range near the Dirac
points. Therefore pair creation by an electric field is less
intensive due to the diminished phase space available and
the conductivity vanishes at large times.
Under assumption of Dirac point dominance, T � �

(definitely covering the temperature range T < 200 K be-
yond which scattering is not negligible [1]), the expression
can be simplified in the same way as Eq. (10),

�TðtÞ ¼ e2

h

Z 1

q¼0
tanh

�
@vgq

T

�
sinð2vgtqÞ

q
; (12)

and is a monotonically decreasing function of the product

tT. For t � t�; �TðtÞ ¼ e2

h
@

tT .

Assuming ballistic transport in a finite sample of sub-
micron length determining an effective ballistic time tb,
this contribution cannot explain the increase of conductiv-
ity with temperature in suspended graphene reported in [2].
However, there is an important source of positive contri-
bution to conductivity even in the ballistic regime. It was
clearly demonstrated that a sample close to minimal con-
ductivity consists of positively and negatively charged
puddles. This means effectively that even at minimal con-
ductivity the chemical potential � locally is finite, rather
than zero, albeit small on average. Physically this implies
that in addition to the novel constant contribution due to
pair creation, there is an ordinary contribution due to
acceleration of electrons like in ordinary metal. In ballistic
regime it grows linearly with time.
Experiment [2] shows that the amplitude of the random

Fermi energy increases linearly with temperature �T ¼
�0 þ �T. For example, for the 0:5 �m long sample �0 ¼
8 meV and � ¼ 0:1 meV=K. The difference between ��
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FIG. 1 (color online). Evolution of the current density �ðtÞ ¼
JðtÞ=E after a dc electric field is switched on at t ¼ 0. Unit of
time is t� ¼ @=�. Conductivity is compared to its ‘‘dynamical’’

value �2 ¼ �
2

e2

h . The temperatures are (from top to bottom) 0,

20, 200, 300 K. The zero temperature conductivity approaches
�2, while finite temperature depresses the pair creation and
eventually the current density vanishes as 1

tT .
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and ��¼0 is equal to the integral in Eq. (6) over the two

regions around the Dirac points determined by jhðkÞj<�.
That way one obtains for t � t�

��ðtÞ � ��¼0ðtÞ ¼ e2

h

� ffiffiffi
3

p
�t

"
� Si

� ffiffiffi
3

p
�t

"

��
; (13)

which is a monotonically increasing function of the prod-
uct�t only (Si is the sine integral function). In Fig. 2 we fit
the value of the ballistic effective time tbal ’ 2� 10�13 s,
which is of the same order of magnitude as for the 0:5 �m
long sample, L=vg ’ 5� 10�13 s.

Discussion and summary.—To summarize, we studied
the dynamics of the particle-hole pair creation by calculat-
ing the time evolution of current density, particle-hole
number, and energy after the electric field is switched on.
After a brief transient period (of order of several t� ¼ "=�)

the current density approaches a finite value. The minimal

dc electric conductivity at zero temperature is �
2

e2

h , differ-

ent from an accepted value 4
�

e2

h . The later value was

obtained for nonideal systems by taking various limits
(impurity strength, etc.) or in theory of finite size effects
[12] and does not characterize an ideal pure infinite gra-
phene sheet. At finite temperature T the current density
diminishes on the scale of tT ¼ "=T ¼ �

T t�. Therefore the

phenomenon of finite resistivity without dissipation disap-
pears unless there exists a shorter time scale intercepting
the process like 2�=! for ac field, relaxation time 	 for
scattering off impurities or phonons or ballistic flight time
tbal for finite samples. The effect of small random chemical
potential was also considered.

Let us now address the issue of the validity of the linear
response approximation used. Since the model does not
provide a channel of dissipation, the problem is nontrivial.
Where does the Joule heat �E2 go? The dynamical ap-
proach allows us to calculate the evolution of energy as

well as to go beyond linear response. Of course the energy
continuously increases with time and at certain time ap-
proaches the conduction band edge at which stage linear
response breaks down. We calculated the evolution of
current density, energy and pair number beyond linear
response and found that Bloch oscillations set in with a

period of tBloch ¼ "
eaE ¼ �

eaE t�. The range of applicability

of the linear response was also determined. The average
current over larger times is zero. This means that at very
high fields the minimal conductivity phenomenon disap-
pears. However in order to reach the conditions for obser-
vation of the Bloch oscillations in graphene all other time
scales 	, tT , tbal, 2�=! should be larger than tBloch.
Additional phenomena beyond linear response as well as
their relation to the Schwinger’s calculation of the pair
creation rate [11,13] is under investigation.
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FIG. 2 (color online). The minimal conductivity as a function
of temperature for time tbal ¼ 500t� is compared with that which

was measured in the 0:5 �m long sample in Ref. [2]. Values for
the random Fermi energy are also taken from Ref. [2].
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