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The Kondo semiconductor YbB12 exhibits a spin and charge gap of approximately 15 meV. Close to the

gap energy narrow dispersive collective excitations were identified by previous inelastic neutron scattering

experiments. We present a theoretical analysis of these excitations. Starting from a periodic Anderson

model for crystalline-electric-field- (CEF) split 4f states we derive the hybridized quasiparticle bands

in slave boson mean-field approximation and calculate the momentum dependent dynamical susceptibility

in random phase approximation. We show that a small difference in the hybridization of the two CEF

(quasi-) quartets leads to the appearance of two dispersive spin resonance excitations at the continuum

threshold. Our theoretical analysis explains the most salient features of previously unexplained experi-

ments on the magnetic excitations of YbB12.

DOI: 10.1103/PhysRevLett.102.106402 PACS numbers: 71.27.+a, 75.40.Gb, 71.70.Ch

The so-called Kondo insulators or semiconductors like,
e.g., CeNiSn, SmB6 and YbB12 represent a special class of
strongly correlated electrons [1]. In these compounds the
conduction electrons hybridize with nearly localized 4f
electrons. The Coulomb repulsion of the latter results in a
small energy gap [2] of order 10 meV at the Fermi level
[3,4]. At temperatures higher than the gap energy these
materials behave like Kondo metals exhibiting their typical
spin fluctuation spectrum. But a low temperatures a spin
and charge gap opens indicating the formation of an insu-
lating singlet ground state [1,5]. This may be concluded
from the total suppression of the local moment in the
susceptibility and from the semiconducting behavior of
the resistivity, respectively [6]. The gap formation may
also be seen directly in the dynamical susceptibility and
finite frequency conductivity as probed in inelastic neutron
scattering (INS) and optical conductivity experiments. In
cubicYbB12 the spin [7] and charge [8] gap obtained in this
way are approximately equal to 15 meV but in general they
need not be identical.

In addition unpolarized [9] and polarized [7] INS has
found an interesting dispersive fine structure around this
threshold energy. Three excitation branches have been
identified with energies 15, 20, and 38 meV, respectively,
by analyzing the spectral function of the dynamical sus-
ceptibility. Since the lower two INS peaks are narrow and
mostly centered at the zone boundary L point with Q ¼
ð�;�;�Þ they may be associated with the formation of a
collective heavy quasiparticle spin resonance exciton ap-
pearing around the spin gap threshold [7,9] and driven by
heavy quasiparticle interactions. The collective modes re-
main visible in the 20 meV region up to T ¼ 159 K
[10,11]. Similar spin resonance phenomena appear as re-
sult of feedback effect in unconventional heavy-fermion
superconductors below the quasiparticle continuum thresh-

old at 2�0 where �0 is the gap amplitude [12]. The upper
peak is much broader and shows little dispersion. It is also
rapidly suppressed with increasing temperature. It has been
associated with continuum excitations [13] also visible in a
broad maximum in the optical conductivity [8] around
38 meV.
These intriguing experimental results have commonly

been interpreted in a qualitative way within the spin ex-
citon scenario [7,9,15] but an alternative model was also
proposed [16]. However no analysis of the former was
attempted sofar although it is of fundamental importance
to understand the microscopic origin and fine structure of
the spin gap in Kondo semiconductors. In this communi-
cation we show in detail how the spin exciton bands in
YbB12 arise on the background of a single-particle con-
tinuum at the spin gap edge. We discuss the origin of the
splitting into two modes, its connection to crystalline-
electric-field- (CEF) effects as well as their spectral shape
and dispersion. Our investigations clarify the underlying
microscopic physics of these intriguing and for a long time
unexplained observations.
Our starting point is the hybridization-gap picture based

on the periodic Anderson model which is the most widely
accepted for the description of Kondo semiconductors.
Using the mean-field slave boson approximation for CEF
split 4f states of Yb we calculate the hybridized bands.
With an empirical model for the quasiparticle interactions
we evaluate the momentum dependent dynamical mag-
netic susceptibility in random phase approximation
(RPA). Its imaginary part is proportional to the INS spec-
trum. We obtain sharp resonance features around the con-
tinuum threshold and wave vectors not too far from the
zone boundary L point. Away from this point the resonance
peaks disperse upwards in energy and broaden. They
merge into the single particle continuum less than halfway
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into the Brillouin zone (BZ), which describes the basic
experimental facts. In addition our calculation suggests
that CEF splitting and associated CEF orbital dependence
of hybridization are responsible for the observed splitting
into two dispersive resonance modes.

The Yb electronic configuration is 4f13 corresponding to
a single hole in the 4f-shell [14]. Therefore we consider
the Anderson lattice model with a f-hole in a j ¼ 7=2
state, including the CEF effect, i.e., Ht ¼ Hf þHd þ
Hf-d þHC: Here Hf describes the lattice of the localized,

CEF-split 4f holes, Hd the conduction electrons and Hf-d
is the hybridization between both. Finally HC is the
Coulomb interaction with an on-site hole repulsion Uff.

Our model assumes the limit Uff ! 1 where doubly

occupied (hole) states (4f12) are excluded and the two
possible Yb configurations are either 4f14 or 4f13. The
one without a 4f hole, i.e., 4f14 can be accounted for by an

auxiliary boson byi [17]. In cubic symmetry the j ¼ 7=2
multiplet is split by the CEF into a quartet �8 ground state
and two excited doublet states. The latter may be treated as
a quasi quartet �0

8 according to INS results at higher

temperatures [18]. The two quartets (index � ¼ 1, 2)
have energies �1 ¼ 0 and �2 > 0. The model
Hamiltonian in the restricted zero- and one- hole Hilbert
space is then

H ¼ X
i�

ð�f þ ��Þfyi�fi� þ
X
k�

�kd
y
k�dk�

þ N�1=2
s

X
ik�

ðVk�e
ik�Rifyi�dk�bi þ c:cÞ; (1)

Here � ¼ ð�; mÞ where � ¼ 1, 2 denotes the quartets and
m ¼ 1–4 is the orbital degeneracy index. Furthermore the

local constraint ~Qi ¼ byi bi þ
P

�f
y
i�fi� ¼ 1 has to be re-

spected for all i. Therefore the total Hamiltonian including

the constraint is H � �b

P
ið ~Qi � 1Þ, where �b is the

Lagrange multiplier. Here the fyi� create f-holes at lattice

sites i in CEF state �, and the dyk� create the holes in the

conduction band with wave vector k and CEF state index
�. The f-orbital energy is �f, while �� ¼ �� is the CEF

excitation energy, and Ns is the number of lattice sites.
Finally Vk� is the hybridization energy between 4f and

conduction holes. In the following, the k dependence of
the hybridization energy is neglected, i.e., Vk� ¼ V�. This

is justified for a fully gapped Kondo insulator like YbB12

where Vk� does not vanish along lines in k space.

Furthermore to use only a minimum set of model parame-

ters, we replace V� ¼ V�;m by V� ¼ 1
2 ð
P

mjV�;mj2Þ1=2
which is the average over each set of quartet states. We
use a nearest-neighbor tight binding model with hopping t
for the conduction electron bands �k. The spectral function
of the experimental dynamical susceptibility of YbB12

exhibits two sharp peaks [7]. Therefore it is essential that
the two CEF quartets have two different average hybrid-
ization energies V� (� ¼ 1, 2).

The mean-field approximation to Eq. (1) is obtained by
taking b ¼ hbii. Minimizing the ground state energy with
respect to b and the Lagrange multiplier �b leads to the
equations

�bb¼
X
�

V�W�;
X
�

nf�þb2 ¼ 1; n¼X
�

ðnd�þnf�Þ;

(2)

where the following expectation values are introduced

W� ¼ 1
Ns

P
khfyk�dk�i, nd� ¼ 1

Ns

P
khdyk�dk�i and nf� ¼

1
Ns

P
khfyk�fk�i. In Eq. (2), n is the density of holes per

site which defines the chemical potential �. The mean-
field Hamiltonian can be diagonalized. One obtains,

HMF ¼ P
k�;�E�;�ðkÞayk�;�ak�;�; where the hybridized

bands have energies E�;�ðkÞ ¼ 1
2 ½�k þ ��f� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�k � ��f�Þ2 þ 4 �V2
�

q
� which are still fourfold (m ¼ 1–4)

degenerate. The corresponding 4f-weight functions of

these quasiparticle bands are given by Af
�;�ðkÞ ¼

Ad
�;�ðkÞ ¼ 1

2 ½1�
��f���kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ��f���kÞ2þ4 �V2
�

p �, where �V� ¼ V�b, and

��f� ¼ �f þ �� � �b. In the zero temperature limit, T ¼
0, the upper bands are empty. Then the Fermi functions
reduce to fðE�;þðkÞÞ ¼ 0, and fðE�;�ðkÞÞ ¼ ’�

(
P

�’� ¼ 4n). Under the condition, n ¼ 2 or ’� ¼ 1,

which holds as long as the chemical potential is within
the hybridization gap, we obtain the following mean-field
equations from Eqs. (2):

��f1 � �f ¼
X

�¼1;2

V2
�

2D
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� ��f�Þ2 þ 4 �V2

�

q
þD� ��f�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDþ ��f�Þ2 þ 4 �V2
�

q
�D� ��f�

;

2b2 ¼ X
�¼1;2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ��f� þDÞ2 þ 4 �V2

�

q
� ðD ! �DÞ

�
: (3)

Here ��f2 ¼ ��f1 þ �2, �V2 ¼ �V1 þ � �V ¼ bðV1 þ �VÞ, and
D ¼ 6t is half the conduction band width. The density of
states of the conduction band is assumed to be rectangular
(gð�Þ ¼ 1=2D;�D< �<D and zero otherwise). By solv-
ing the set of equations numerically one can find the ��f1
and b values. In order to be in the Kondo limit and have an
insulating state with small hybridization gap the parame-
ters should fulfill the condition �2 < �V < V1; j �f j <D.

In the absence of CEF effects, by choosing �f ¼ �0:75t,

V1 ¼ t, �V ¼ 0, �2 ¼ 0 we found ��f1 ¼ 0:05t and b ¼
0:30 from the mean-field solutions which will be used in
Fig. 1. The dynamic magnetic susceptibility has the matrix

form �̂ðq; !Þ ¼ ½I� Ĵq�̂0ðq; !Þ��1�̂0ðq; !Þ; where the

unit matrix I, the interaction Ĵq and the noninteracting

quasiparticle susceptibility �̂0ðq; !Þ are 2� 2 matrices in
the CEF quartet index � ¼ 1, 2. The exchange interaction

Ĵq between quasiparticles is assumed to be peaked at the

antiferromagnetic (AFM) wave vector Q ¼ ð�;�;�Þ, i.e.,
the L point because there the most pronounced magnetic

response is found. In principle Ĵq may be calculated to
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order (1=N2) [19,20] but this is strongly model dependent.

We choose to parameterize Ĵq in a simple way: The inter-

action is peaked at Q or Q ¼ ffiffiffi
3

p
� and it has the

Lorentzian form Jq��0 ¼ ½ �2
Q

ðq�QÞ2þ�2
Q

�JQ��0 , where �Q has

the meaning of an inverse AFM correlation length. Each
element of the irreducible susceptibility matrix is calcu-
lated from the quasiparticle states as [20]:

���0
0 ðq; !Þ ¼ X

k;�
Af
�;�ðkþ qÞAf

�0;�ðkÞ

�
�
fðE�;�ðkþ qÞÞ� fðE�0;�ðkÞÞ
E�;�ðkÞ � E�0;�ðkþ qÞ �!

�
; (4)

The nondiagonal elements of the interaction matrix corre-
sponding to interactions of quasiparticles with different
CEF symmetry are neglected, implying Jq��0 ¼
J�ðqÞ���0 . Then the RPA susceptibility is simply a sum
of two contributions ���ðq; !Þ from the two sets of hybri-
dized bands:

�ðq; !Þ ¼ X
�

½1� J�ðqÞ���
0 ðq; !Þ��1���

0 ðq; !Þ: (5)

We now discuss the results of numerical calculations
based on the previous analysis. In Fig. 1 we have plotted
the real and imaginary part of ���

0 ðq; !Þ without CEF

splitting (�2 ¼ �V ¼ 0) versus energy for wave vectors
q ¼ 0 and q ¼ Q. One notices that Im���

0 ðQ; !Þ has a

strong low-energy peak due to a small indirect gap while

Im���
0 ð0; !Þ has a small peak at much higher energy due to

a large direct gap. The broad structure of the former is due
to noninteracting single-particle excitations and the q and
! dependence is depicted in the inset of Fig. 4.

The density of states for noninteracting quasiparticles
��ð!Þ ¼ 1

Ns

P
k;��ð!� E�;�ðkÞÞ including the CEF split-

ting for the two sets of bands with �2 ¼ 0:01t and �V ¼
0:13t is plotted in the inset of Fig. 1. The two hybridization
gaps are different due to a finite �V. However, the latter is
kept small enough to ensure that the chemical potential is
within the gap.
When the AFM interaction J�ðqÞ is turned on, the

imaginary part becomes Im���ðq;!Þ¼Fð	�;
�Þ=J�ðqÞ,
	� ¼ J�ðqÞIm���

0 ðq; !Þ, 
� ¼ 1� J�ðqÞRe���
0 ðq; !Þ,

and Fð	�; 
�Þ ¼ 	�=ð
2
� þ 	2

�Þ. In that case the spectrum
for q ¼ Q moves to lower energies and a narrow double-
peak structure, i.e., the collective spin resonance excita-
tions appear. Their energies !�

r are determined by the
solution of 
� ¼ 0. If they are lying within the indirect
hybridization gap one has 	� ! 0. Then the spectral func-
tion is a delta function ��ð
�Þ=J�ðqÞ at the resonance
energy !r. The dispersion of the resonance, is determined
by the real part of ���

0 ðq; !Þ presented in Fig. 2. The plot

shows that for q < Q the maximum of the spectral function
follows a ridge which decreases in height and bends to
higher energy. This turns into an upward dispersion of the
resonance pole. Its endpoint in the BZ is limited by the
extension of the ridge in Re�0. The latter is fixed for the
simple hybridization band model used here. A more real-
istic band model might give a larger extension than the one
seen in Fig. 2.
Because of the CEF effect the f levels split into two

(pseudo-) quartets (�2 > 0) which hybridize differently.
For �V > 0 the resonance !�¼2

r associated with the � ¼
2 hybridized bands moves to higher energy and a second
peak in addition to the one at !�¼1

r appears in the spectral
function. This is clearly seen in Fig. 3 where the CEF-split
resonance peaks at q ¼ Q appear around the threshold
energy of the noninteracting continuum states. In this
figure we use subcritical values for the interaction con-
stants. Therefore the resonance peaks are right above the
continuum threshold and have a finite intrinsic line width.
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FIG. 1 (color online). Dynamical susceptibility in the ½111�
direction for q ¼ 0 (direct gap) and q ¼ Q (indirect gap) versus
energy, for degenerate quasiparticle bands with V1 ¼ t and
�V ¼ 0 ( �V ¼ 0:30t, JQ ¼ 0). Inset shows the density of states

for two CEF-split quasiparticle bands ( ��f1 ¼ 0:08t and b ¼
0:41). The green curve corresponds to the band V1 ¼ t and the
red one to the band V2 ¼ V1 þ 0:13t.

FIG. 2 (color). Contour plot of the real part of noninteracting
dynamical susceptibility for degenerate bands with V1 ¼ t and
�V ¼ 0 ( �V1 ¼ 0:30t, JQ ¼ 0) in the ½111� direction.
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If the interaction constants are slightly increased the
resonances move below the continuum and turn into true
spin exciton poles without intrinsic line widths (within
RPA). Their dispersion is shown in the main panel of

Fig. 4. Away from the L point (Q ¼ ffiffiffi
3

p
�) they disperse

upwards and merge into the continuum. We identify these
spin resonance modes with the observed experimental
peaks at 15 and 20 meV [7,9] and we have chosen parame-
ters such that their energy splitting and dispersion are
reproduced. Our numerical calculations show that the
best fit to experiments is obtained for �V ¼ 0:13t, where
��f1 ¼ 0:08t and b ¼ 0:41. These spin exciton peaks sepa-

rate with increasing CEF splitting �2 and hybridization
energy difference �V. Therefore the influence of the latter
is strong since it directly affects the hybridization gap and
hence the noninteracting susceptibility and resonance con-
dition. We note that an increase in JQ (or a decrease of the

hybridsation gap) will lead to a decrease of the spin exciton
mode frequencies at Q. For JQ1

¼ 0:179t the lowest mode

would become soft. This softening signifies the instability
of the paramagnetic state and the onset of AFM order in a
Kondo semiconductor. This is not observed in YbB12 at
ambient pressure. We suggest that an investigation of the
pressure dependence of spin exciton mode frequencies at
Q would give important clues how close YbB12 is to AFM
order. Finally, we mention that our present model does not
include the broad excitations at 38 meV. This might be due
to a continuum of additional band states which do not take
place in the resonance formation [13]. Their inclusion
would require a multiorbital conduction band model.
We thank P. A. Alekseev and I. Eremin for helpful

discussions.
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FIG. 3 (color online). The imaginary part of the susceptibility
for the noninteracting (JQ ¼ 0) and interacting case (JQ1

¼
JQ2

¼ 0:065t) for V1 ¼ t, q ¼ Q and �V ¼ 0:13t. The JQ�

are slightly subcritical leading to a finite intrinsic resonance
line width.

FIG. 4 (color). Contour plot of imaginary part of RPA dynami-
cal susceptibility with Lorentzian interaction J�ðqÞ for CEF-split
quasiparticle bands, ��f1 ¼ 0:08t and b ¼ 0:41. Here V1 ¼ t and

V2 ¼ V1 þ 0:13t (JQ1
¼ 0:125t, JQ2

¼ 0:143t and �Q ¼ 2

which satisfy the resonance condition in RPA formula: J�ðQÞ ¼
1=Re½���

0 ðQ; !rÞ�), in the ½111� direction. The peaks at the zone
boundary (q ¼ Q) appear at !1 ¼ 0:047t and !2 ¼ 0:063t. By
choosing t ¼ 0:32 eV (D ¼ 1:92 eV) then !1 ¼ 15 meV and
!2 ¼ 20 meV which are comparable with experimental results.
The inset shows the contour plot of imaginary part of dynamical
susceptibility of noninteracting degenerate bands for comparison
(V1 ¼ t, �V ¼ 0:13t, �V1 ¼ 0:41t, and JQ ¼ 0) in the ½111�
direction. The color scale of the inset is the same as in Fig. 2.
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