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Symmetry breaking during phase transitions can lead to the formation of topological defects (such as

vortex lines in superfluids). However, the usually studied Bose-Einstein condensates (BECs) have the

shape of a cigar, a geometry that impedes vortex formation, survival, and detection. I show that, in elon-

gated traps, one can expect the formation of gray solitons (long-lived, nontopological ‘‘phase defects’’) as

a result of the same mechanism. Their number will rise approximately in proportion to the transition rate.

This steep rise is due to the increasing size of the region of the BEC cigar where the phase of the

condensate wave function is chosen locally (rather than passed on from the already formed BEC).
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Phase transitions are usually studied as equilibrium
phenomena. However, as a consequence of the critical
slowing-down, second-order phase transitions depart
from equilibrium near the critical point, where the new
broken symmetry phase is chosen. Hence, that choice must
be made locally, within regions that can dynamically
‘‘agree’’ on how to break symmetry. Cosmology offers a
well-known example: As pointed out by Kibble [1], rela-
tivistic causality alone limits the size of domains over
which symmetry breaking can be coordinated. As a con-
sequence, topological defects such as monopoles, cosmic
strings, and domain walls can form.

In laboratory phase transitions, relativistic causality
does not provide useful estimates of the domain size with
the approximately uniform new phase and, hence, does not
lead to predictions of defect density. One can, however,
estimate the domain size by appealing to universality of
second-order phase transitions [2]: Symmetry breaking is
coordinated by the dynamics of the order parameter. In the
vicinity of second-order transitions, critical slowing-down
implies that the relaxation time (which determines the
reflexes of the system) and the healing length (which sets
the scale on which its order parameter ‘‘heals,’’ i.e., returns
to its equilibrium value) diverge as

� ¼ �0=j�j�z; (1)

� ¼ �0=j�j�: (2)

Above, �0 and �0 depend on the microphysics, while the
critical exponents � and z define the universality class of
the transition, and � is the relative temperature

� ¼ TC � T

TC

; (3)

with TC the critical temperature.
Taking the ratio of � and �, one obtains:

v ¼ ð�0=�0Þj�j�ð���zÞ ¼ v0j�j�ðz�1Þ: (4)

This is the speed of perturbations of the order parameter.
The resulting sonic horizon plays a key role.

Divergence of the healing length was recently observed
in measurements of phase coherence above the Bose-
Einstein condensate (BEC) critical point [3], demonstrat-
ing that the phase of the condensate wave function is
becoming coherent over distances that increase as the
critical point is approached from above, as expected from
Eq. (2). If the critical region was traversed infinitesimally
slowly, all of the newly created BECs would have a single
coherent phase. However, when the transition is accom-
plished at a finite rate, critical slowing-down, Eq. (1),
intervenes: As its reflexes deteriorate, the phase of the
order parameter cannot establish coherence over scales
larger than the sonic horizon.
In the usual discussions of topological defect formation

[2,4], one first calculates the instant t̂ at which the system
ceases to follow the externally imposed variation of its
parameters by comparing the time scale �= _� at which
relative temperature changes to the relaxation time:

�ðt̂Þ ¼ �ðt̂Þ= _�ðt̂Þ: (5)

To obtain t̂, we need the dependence of � on t. We assume
that it is linear, parametrized by quench time �Q:

� ¼ t=�Q: (6)

The system adjusts its state adiabatically as long as the
imposed rate of change is slow compared to its reflexes
given by the inverse of �, Eq. (1). The transition from the
adiabatic to impulse behavior happens at t̂ given by Eq. (5),

i.e., �0j t̂
�Q
j��z ¼ t̂. So, the order parameter ‘‘freezes’’

when the relaxation time and t̂ coincide;

t̂ ¼ ð�0��zQ Þ1=ð1þ�zÞ ¼ �̂: (7)

The order parameter will resume evolution only t̂ after
the critical point is passed. The scale of the fluctuations
(reported in Ref. [3]) that seed structures (such as topo-
logical defects) in the broken symmetry BEC phase [2,4–6]
is thus established at t̂, i.e., at the relative temperature:
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�̂ ¼
�
�0
�Q

�
1=ð1þ�zÞ

: (8)

The scale given by the corresponding healing length

�̂ ¼ �0

�
�Q
�0

�
�=ð1þ�zÞ

(9)

determines the density of defects. The phase of the newly

formed BEC wave function will be coherent on scales��̂.
Therefore, one expects a defect fragment (e.g., one section

of a vortex line) per �̂-sized domain [1]. In a homogeneous

3D quench, this leads to a vortex line density of ��̂�2

[2,4,7], in accord with most of the experimental evidence
[6], including BECs [8,9]. It is confirmed and refined by
numerics [10], which also indicate that there is typically

less than one defect fragment per �̂-sized domain: Rather, a

defect fragment is usually found in a larger f�̂-sized
region, where �Q-independent f is set by the microphysics

of the transition. The factor f can be greater than 1, and
f� 10 are common [10]. The density of defects created by
phase transitions is the best known (but not the only)
prediction of this ‘‘Kibble-Zurek mechanism’’ (KZM).

In the inhomogeneous case (e.g., effectively 1D trap),
the situation is different: The gas density (and, hence, local
critical temperature TC) depends on location. Thus, even
when T drops uniformly due to evaporative cooling, the gas
will reach local critical temperature TCð ~rÞ at different
instants: �ð ~rF; tFÞ ¼ 0 defines the front of the transition
~rFðtFÞ as it spreads through the cigar. So the critical front
will appear at tF that depends on location ~rF.

Before the evaporative cooling, the local density is [11]

�ð~rÞ ¼ �0 exp½��Vð~rÞ�: (10)

Above Vð ~rÞ is the (typically, harmonic) trap potential and
� ¼ 1=kBT. Einstein’s condition for BEC formation in-
volves density and de Broglie wavelength, ��3

dBðTCÞ �
2:61. In elongated traps, one can in effect eliminate trans-
verse dimensions [12]. This implies a local TCðxÞ:

TCðxÞ ’ 2�@2

mkB

�
�ðxÞ
2:61

�
2=3

; (11)

where m is the mass of bosons, while @ and kB are Planck
and Boltzmann constants, respectively.

When anywhere in a large effectively 1D harmonic trap
the temperature falls below local TCðxÞ in a region large
compared to the healing length, the condensate will begin
to form. We assume that cooling decreases T uniformly, so
that

TðtÞ ¼ TCð0Þ
�
1� t

�Q

�
(12)

everywhere in the trap. Therefore, front coordinates xF and
tF are related by the equation �ðxF; tFÞ ¼ 0, or

tF
�Q

¼ 1� TCðxFÞ
TCð0Þ : (13)

So the condensate can form first in a healing length size
domain near x ¼ 0, where the potential is deepest. In an
infinitesimally slow quench, that initial seed would grow to
occupy the whole trap. But this cannot happen when the
quench is so fast that regions far away from the center
quickly attain temperatures far below the local TCðxÞ: They
will begin to form BECs independently, from local seeds
and with locally selected phases.
The phase of the newly formed BEC wave function can

be then either communicated along x or selected at differ-
ent points of the trap independently (as would be the case
in a homogeneous quench). What actually happens is
decided by causality and depends on the comparison of
the causal horizon defined by the relevant sound velocity
[Eq. (4)] and the velocity of the front:

vF ¼
��������
dxF
dtF

��������¼
TCð0Þ
�Q

��������
dTCðxÞ
dxF

��������
�1

: (14)

The speed of the front is infinite at the center of the trap
where VðxÞ has its minimum and drops with the inverse of
the gradient of the critical temperature. The perturbations

travel distance ��̂ over time t̂. So, the relevant speed of
sound corresponds to the freeze-out �̂:

v̂ ¼ �̂

�̂
¼ �0

�0

�
�0
�Q

�
�ðz�1Þ=ð1þ�zÞ

: (15)

The role of v̂ and its sonic horizon emerged in discussions
of vortex formation in 3He superfluid. These experiments
start with a cigar-shaped bubble heated above the critical
point [13] which quickly cools to the temperature of the
surrounding 3He superfluid. One might have expected that
superfluid on the outside of the bubble will impose the
(uniform) phase of its wave function on the cooling ‘‘ci-
gar.’’ That this need not happen was noted in Ref. [14]:
When the front TðxÞ ¼ TCðxÞ spreads faster than v̂, the
phase of the newly formed condensate is chosen locally.
Subsequent studies [15] confirmed that when the front
velocity vF exceeds v̂, symmetry breaking happens as in
a homogeneous transition, and defects appear with density

inferred from �̂. However, when v̂ > vF, a preexisting
condensate propagates its phase into the newly forming
regions, and topological defects do not form.
In the quasi-1D traps, one does not expect to see vortices

as, at formation, their �̂-sized cores barely fit inside the
cigar, so, even if they form, they can easily escape. Vortices
do form in quasi-2D pancake traps [8,9]. But in the effec-
tively 1D geometry there is a stable defect related to phase
nonuniformity—the gray soliton [16]. It corresponds to a
solution of the Gross-Pitaevski equation and describes a
localized (healing length scale) nonuniformity of the BEC
phase and a corresponding depletion of the condensate
density. The solitons are not topological: The phase change
across the soliton can be arbitrary but, far away (more than
a healing length � away from the soliton), it asymptotes to
a constant value. Its change by � yields a dark soliton,
which causes complete depletion of the BEC density at its
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center. Dark solitons are stationary, but gray solitons, with
phase change less than � and a smaller depletion of central
density (hence ‘‘gray’’ in their name), move along the BEC
cigar with velocities set by the local density depletion.
When they arrive at the point where BEC density is lower,
they become (locally) ‘‘dark,’’ stop, and are reflected. Gray
solitons were seen oscillating in this manner along BEC
cigars [17].

We can expect that nonuniformities of phase left by the
BEC formation will give rise to gray solitons. Using the
KZM, we can estimate the density of phase jumps caused
by the BEC formation. Thus, we can also estimate the
density of gray solitons in a homogeneous region and their
total number left in the trap by the phase transition into
BEC. To this end, we compute local ‘‘freeze-out’’ values of

�̂, �̂, and v̂ using the local rate of change of �:

d�ðx; tÞ
dt

��������x
¼ TCð0Þ

TCðxÞ
1

�Q
¼ 1

�QðxÞ : (16)

This defines effective local quench time

�QðxÞ ¼ �Q
TCðxÞ
TCð0Þ ; (17)

which in turn yields local relative temperature

�ðx; tÞ ¼ t� tFðxÞ
�QðxÞ : (18)

Now one can proceed as usual and compute local t̂:

t̂ x¼
�
�0

�
�Q

TCðxÞ
TCð0Þ

�
�z
�
1=ð1þ�zÞ ¼ ½�0��zQ ðxÞ�1=ð1þ�zÞ: (19)

Note that this t̂x gives the time interval to the instant tFðxÞ
at which the critical point is reached at the location x, and
Eq. (16) is satisfied. This corresponds to the local

�̂ x ¼ t̂x
�QðxÞ ¼

�
�0

�QðxÞ
�
1=ð1þ�zÞ

: (20)

We have now all of the ingredients to calculate the local
frozen out healing length:

�̂ x ¼ �0

�̂�x
¼ �0

�
�QðxÞ
�0

�
�=ð1þ�zÞ

: (21)

Local velocity at the freeze-out is then a function of x:

v̂ x ¼ �̂x

�̂ðxÞ ¼
�0

�0

�
�0

�QðxÞ
�
�ðz�1Þ=ð1þ�zÞ

: (22)

These estimates are essentially the same as for the homo-
geneous case: Key modification enters through the locally
defined �QðxÞ [Eq. (17)].

These predictions apply to the central part of the cigar
where the critical front spreads faster than v̂—than the
velocity of the perturbations of the order parameter. The
region where the above quasihomogeneous quench predic-
tions are accurate must therefore satisfy vF > v̂x. In view
of our above discussion, this leads to

TCð0Þ
�Q

��������
dTCðxÞ
dx

��������
�1

>
�0

�0

�
�0

�QðxÞ
�
�ðz�1Þ=ð1þ�zÞ

: (23)

When VðxÞ ¼ m!2x2

2 , TCðxÞ [Eq. (11)] is a Gaussian:
TCðxÞ ¼ TCð0Þe�x2=2�2

; (24)

where ��2 ¼ 2
3�m!2, and we ignored variations perpen-

dicular to the long axis. Inequality (23) leads to

jX̂j< �2

�0

�
�0
�Q

�ð1þ�Þ=ð1þ�zÞ
e�X̂2=ð1þ�zÞ�2

: (25)

This inequality determines the size of the section ½�X̂; X̂�
of the cigar where vF > v̂, and the motion of the critical
point is supersonic. There the quench is effectively homo-
geneous, and defects (including solitons) will appear with

separations given by the local �̂ (see Fig. 1).

The equation for X̂ is simple, but it is transcendental. We

focus on the case where X̂ < �. Then the exponent in
Eq. (25) can be approximated by unity, which leads to

FIG. 1 (color). Formation of gray solitons in a cigar-shaped
Bose-Einstein condensate. (a) Isodensity contour in the trapped
gas. As evaporative cooling proceeds, critical temperature is first
reached in the center of the trap. That is where the condensate
will form first. When cooling is sufficiently slow, this initial seed
grows and imposes its selection of the condensate wave function
phase on the whole cigar, and no gray solitons are created by the
quench. (b) As is seen in the schematic color plot of the wave
function phase in a cross section of a BEC cigar, the situation
changes when the BEC phase front—the location where the
decreasing temperature is instantaneously equal to the local
critical temperature (set by the local density via Einstein’s
condition)—moves faster than the velocity v̂ with which pertur-
bations of the emerging order parameter can spread. In this case,
regions of size �̂, the relevant healing length, select the phase of
the BEC wave function independently. The front velocity vF is
infinite at x ¼ 0 but falls rapidly with the distance x from the
center. The condensate phase will be selected randomly by the
symmetry breaking process in regions where v̂ < vF. Such
random phase distribution provides seeds for gray solitons.
The phase front moves much less rapidly in the narrow direction
of the cigar, so phases selected near the axis spread sideways,
resulting in phase stripe pattern seen above in the schematic view
of the BEC cigar.
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jX̂j � �2

�0

�
�0
�Q

�ð1þ�Þ=ð1þ�zÞ
: (26)

This estimate of X̂ is valid for slow quenches; i.e., it breaks

down when �
�0
ð�0�QÞð1þ�Þ=ð1þ�zÞ > 1 but holds when

�Q � �0

�
�

�0

�ð1þ�zÞ=ð1þ�Þ ¼ �0

�
�

�dB

�ð1þ�zÞ=ð1þ�Þ
: (27)

We assume that this is indeed the case. This focus on slow
quenches is anyway prudent: Our discussion assumes that,
outside of the freeze-out interval, the order parameter is at
or near the equilibrium set by the relative temperature �ðtÞ.
Very rapid quenches could strain this assumption.

Equation (27) yields simple scaling for the total number
of solitons. Note that above we have set �0 ¼ �dB, the
de Broglie wavelength at the critical temperature [7]. We
are now ready to estimate the total number of gray solitons.
We obtain it by multiplying the size of the quasihomoge-
neous quench region by the expected density of phase
changes. This yields

N � 2X̂

f�̂
¼ 2�2

f�2
dB

�
�0
�Q

�ð1þ2�Þ=ð1þ�zÞ
: (28)

The surprise is that the scaling of the number of solitons
with the quench time scale �Q is so steep. For example, for

the plausible values � ¼ 2
3 and z ¼ 3

2 , we predict
1þ2�
1þ�z ¼ 7

6 ,

while for mean field � ¼ 1
2 and z ¼ 2, the exponent 1þ2�

1þ�z ¼
1. So the number of gray solitons is expected to be ap-
proximately proportional to the quench rate.

Several aspects of the above prediction deserve com-
ment. To begin, note that we have ignored all of the aspects
of the process that cannot be deduced from the universality
class. They will influence the size of f. Here we include
issues such as how dark a gray soliton must be to count as a
soliton and other matters relevant for experiments. For
instance, it is known that solitons—while they are long-
lived—do not live forever. Therefore, the number of soli-
tons will depend on their survival rates.

The calculation above also addresses the question of
when the quench can produce a uniform BEC. This will

happen when �̂ � X̂, for quenches so slow that they
produce N � 1 solitons in a trap. There is also an opposite
limit of very fast quenches. We shall not address it here as
it is cumbersome [e.g., transcendental Eq. (25) cannot be
approximated in a way that yields a simple result].
Moreover, in order to reach it in experiments, one would
need to drop the temperature very quickly throughout the
trap and far below TC at the center of the trap. For such
rapid quenches, linear approximation � ¼ t=�Q is likely to

break down, leading to further cumbersome but trivial
complications. This last comment brings one more remark:
In most experimental settings, TðtÞwill fall below TC at the
center of the trap, but this may be above TCðxÞ at some
sufficiently large x. Our analysis applies as long as that x

lies outside the central interval of 2X̂ or, more precisely, as
long as the quench can be well approximated by linear
relations [e.g., Eq. (12)] inside it.
We discussed formation of gray solitons in elongated

traps. The experiment aimed at detecting such nontopo-
logical remnants of a BEC phase transition should be easier
than experiments [9] that study formation of vortex lines
(which require more than a quasi-1D geometry). It should
allow one to probe the connection between causality and
symmetry breaking and test scalings predicted by the
Kibble-Zurek mechanism. Last but not least, we note that
similar considerations will apply to traps with 2D and 3D
geometry, as also in these cases one would expect only the
central region of the trap to satisfy the appropriate ana-
logue of the causality inequality (25).
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