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We report first-principles-based calculations, combined with an efficient Monte Carlo technique, that

undoubtedly show that PbðZr0:5Ti0:5ÞO3, one of the most important ferroelectrics to date, adopts critical

behavior that strongly deviates from the classical mean-field approach while being, in fact, consistent with

the 3D-random Ising universality class.
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Ferromagnetic systems form an important class of ma-
terials that possess a spontaneous (magnetic) dipole for
temperatures below their Curie temperature, TC [1]. They
are known for around 50 years [2] to exhibit, around TC,
critical behaviors that are governed by specific exponents.
Examples of such critical behaviors and exponents are [3]:

� / ðT � TcÞ��; � / ðT � TcÞ��;

M / ðT � TcÞ�;
(1)

where �, �, andM are the correlation length, susceptibility
and spontaneous magnetization, respectively. The exact
value of the exponents (�, �, �) solely depend on the so-
called universality class to which the ferromagnetic system
belongs. For instance, a large number of ferromagnets are
associated with Ising or Heisenberg universality classes
(see Refs. [4,5] and references therein), whose critical
exponents are indicated in Table I.

Interestingly, while critical behaviors in ferromagnetics
are undoubtedly established and have been the focus of a
flurry of studies (see, e.g., Refs. [4,5,10] and references
therein), a great controversy surrounds another type of
dipolar systems that are of large technological and funda-
mental interest since World War II because of their fasci-
nating physical properties [11,12]. This second type is
formed by ferroelectrics, which are compounds possessing
a spontaneous (electric) polarization below their Curie
temperature. As a matter of fact, two schools of thought
‘‘oppose’’ each other regarding critical behaviors in ferro-
electrics. One school emphasizes that ferroelectrics can
also adopt critical behaviors associated with universality
classes typically found in magnets, and therefore can show
deviation from classical mean-field, Landau, behavior (see,
e.g., Refs. [13–15] and references therein). This, despite
the fact that long-range dipolar interactions are much more
important in ferroelectrics than in ferromagnets, and that
such long-range effects tend to suppress the short-range-
induced large fluctuations that are responsible for the
deviation of properties with respect to the mean-field be-
havior [16] (which is related to the so-called Levanyuk-

Ginzburg criterion [17,18]). On the other hand, the other
school of thought asserts that the only possible critical
exponents in ferroelectrics are those given by the mean-
field approach [19–22] (based on the hypothetical full
suppression of the short-range-induced fluctuations), and
that the non-mean-field critical exponents previously re-
ported in the literature for ferroelectrics either result from
an unreliable fit of data or from the existence of defects in
the studied ferroelectric samples. Such long-standing con-
troversy in such important materials has motivated us to
use a first-principles-based approach within Monte Carlo
simulations to determine critical behaviors (if any) in the
defect-free PbðZr0:5Ti0:5ÞO3 (PZT) system, which is one of
the most used ferroelectric materials in applications (such
as actuators, transducers, ferroelectric random access
memories, etc. [23]). The use of this ab initio technique
enables us to undoubtedly reveal that PZT adopts critical
behaviors that (1) strongly deviate from those given by the
mean-field model, and (2) are, in fact, consistent with those
associated with the 3D-random-Ising universality class.
We consider here a disordered solid solution made of

PbðZr0:5Ti0:5ÞO3, as mimicked by a L� L� L supercell
that is periodic along any Cartesian direction. Practically,
we use L ¼ 12, 14, 16, 18, and 20, which corresponds to a
relatively large number of atoms (namely, from 8640 to
40 000). The total energy of this bulk, Etot, is provided by
an ab initio effective Hamiltonian method (that is techni-
cally valid for Ti compositions close to 50%). More pre-
cisely, the expression and first-principle-derived
parameters of Etot are those of Ref. [24]. As a result, its
degrees of freedom are the local soft modes in all the unit
cells i of the supercell, fuðiÞg (which are directly propor-
tional to the electrical dipole moments centered on those
sites), and the f�g strain tensor (that gathers the homoge-
neous and inhomogeneous parts [24]).Etot has seven differ-
ent energetic parts [24,25]: a local-mode self-energy
(quartic in fuðiÞg); a long-range electric dipole-dipole in-
teraction [quadratic in uðiÞ, and that is computed via an
Ewald construction in the 3D-reciprocal space [25]]; a
short-range interaction between local soft modes [qua-
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dratic in uðiÞ]; an elastic energy (quadratic in �); an
interaction between the local soft modes and strains [qua-
dratic in uðiÞ and linear in �]; an on site effect of alloying
on local modes [quartic in uðiÞ]; and an intersite contribu-
tion of alloying to local soft modes [linear in uðiÞ] and to
strain (linear in �). It is important to realize that the
analytical expression of Etot results from a Taylor develop-
ment around the cubic paraelectric phase, and does not
contain any a priori hypothesis about the universality class
that PZT may belong to (if any). In other words, the
analytical expression of Ebulk is rather general for ferro-
electric solid solutions, and does not assume, or guarantee
in advance, that PZT belongs to a specific universality
class.

Technically, Etot is used in Monte Carlo (MC) simula-
tions within the so-called Wang-Landau algorithm, which
is an efficient and accurate method for the study of phase
transitions and that calculates the density of states, gðEÞ, by
carrying out a random walk in energy space with an
acceptance probability proportional to 1=gðEÞ (instead of
the usual Boltzmann weight used in conventional MC
simulations) [26]. The density of states is the key quantity
for calculating thermodynamic observables at all tempera-
tures. The local soft modes and strains of bulk PZT are
collected at each MC sweep. Note that the use of the
effective Hamiltonian approaches in MC simulations has
been shown to be rather accurate in PZT systems, by, e.g.,
confirming the existence of a monoclinic phase in the
phase diagram of bulk PZT [24] and of periodic nanostripe
domains in PZT thin films [27]. The presently used effec-
tive Hamiltonian predicts, below the Curie temperature and
in agreement with experiments [28], a P4mm tetragonal
ferroelectric state with a polarization lying along a h100i
pseudocubic direction for the investigated Ti composition
of 50% [24].

In order to determine if PZT bulk adopts a critical
behavior, and to evaluate its critical exponents (if any),
we follow the well-established finite-size scaling scheme
of Refs. [6,7]. Such a scheme, e.g., (i) involves the maxi-

mum values of �T2 d lnhpi
dT , �T2 d lnhp2i

dT , and �T2 d lnhp4i
dT for

a given supercell dimension, L (with these maximum

values being denoted by �T2 d lnhpi
dT jmax, �T2 d lnhp2i

dT jmax,

and �T2 d lnhp4i
dT jmax, respectively, in the following) with

T, p, and hi representing the temperature, dipole, and
statistical average over the supercell sites and MC sweeps,
respectively; and (ii) indicates that the log-log plots of

�T2 d lnhpi
dT jmax, �T2 d lnhp2i

dT jmax, and �T2 d lnhp4i
dT jmax versus

the supercell dimension, L, should all be linear, with a
slope equal to the inverse of the critical exponent � if the
studied system indeed exhibits a critical behavior.
Figures 1(a)–1(c) display such log-log plots in the inves-
tigated PZT bulk, as resulting from our Monte Carlo simu-
lations using the Wang-Landau algorithm. These three
plots are not only all linear but also possess a very similar
slope of 1:4874� 0:0118, which reveals that our presently
studied PZT bulk adopts a critical behavior with an ex-
ponent � of 0:6723� 0:0053 [29,30]. Such an exponent
deviates from the well-known value of 0.5 provided by the
classical Landau approach [3]. Such a finding therefore
implies that ferroelectrics can indeed adopt non-mean-field
critical exponents, as correctly guessed by Refs. [13–15]
and unlike those advocated in Refs. [19–22]. Long-range
dipolar interactions are therefore not sufficient enough to
fully eliminate short-range-induced fluctuations in ferro-
electrics [16–18].

TABLE I. Critical exponents for different universality classes and in PZT.

Exponent PZT Bulk 3D-Heisenberg model [6] 3D-Ising model [7] 3D-random-Ising model [8,9]

� 0:6723� 0:0053 0:7048� 0:0030 0:6270� 0:0020 0:7100� 0:0300 0.683

� 1:4946� 0:0838 1:3873� 0:0085 1:2470� 0:0070 1:4600� 0:0700 1.341

� 0:33� 0:02 0:3639� 0:0035 0:3258� 0:0044 0:3400� 0:0200 0.354
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FIG. 1 (color online). Log-log plots of �T2 d lnhpi
dT jmax (panel

a), �T2 d lnhp2i
dT jmax (panel b) and �T2 d lnhp4i

dT jmax (panel c) in

arbitrary units.
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Finite-size scaling laws [6,7,31] further indicate that the
value of the critical exponent � and � can be extracted
from the knowledge of the maximum value of the dielectric
susceptibility, �max, and of the value of the average dipole
at the critical temperature, hpðTcÞi, for several supercell
dimensions, once having determined �. More precisely, the
log-log plot of �max versus L should be a linear function
with a slope equal to �=�, while the log-log plot of hpðTcÞi
as a function of L should also be linear but with a slope
now given by �=�. Figure 2 displays these log-log plots, as
resulting from the use of our ab initio-based method in our
investigated PZT bulk (note that its Curie temperature was
practically determined by linearly interpolating the tem-
perature associated with the maximum of the derivative of

p with respect to T down to a zero value of L�1=� [7]).
Such plots are indeed linear, thus further confirming that
the studied PZT bulk possesses critical behaviors. Their
slopes provide critical exponents � of 1:4946� 0:0838
and � of 0:33� 0:02, when adopting the value 0:6723�
0:0053 determined from Fig. 1 for �. Interestingly, our
value for � agrees with the measurement of Ref. [14]
yielding � ¼ 0:33� 0:04 in a PbðZr0:9Ti0:1ÞO3 sample
near its Curie temperature, while we are not aware of any
previous (theoretical or experimental) determination of �
and � in disordered PZT solid solutions. Moreover, our
determined values for both � and � strongly differ from
those associated with the mean-field approach (that are 1
and 0.5, respectively [3]), which further emphasizes that

fluctuations are important to describe properties of ferro-
electrics near their paraelectric-to-ferroelectric phase tran-
sition (note that we further performed simulations on
disordered PZT solid solutions having other Ti composi-
tions, namely, 40% and 55%, which corresponds to a
rhombohedral and tetragonal phase below TC, respectively
[28], and also found that such PZT compounds possess
critical behaviors that strongly deviate from those pre-
dicted by the mean-field approach).
Let us now reveal if our values for �, �, and � for

PbðZr0:5Ti0:5ÞO3 are associated with a well-known univer-
sality class. For that, we report them in Table I, along with
the critical exponents corresponding to the 3D-Heisenberg
[6], 3D-Ising [7], and 3D-random-Ising [8,9] models. Our
extracted value for � (and its small uncertainty) rules out
both the 3D-Ising and 3D-Heisenberg models as the uni-
versality class that the disordered PbðZr0:5Ti0:5ÞO3 solid
solutions belong too, while it is very close to the one of the
3D-random-Ising universality class. In fact, Table I indi-
cates that our three numerically-determined exponents for
disordered PbðZr0:5Ti0:5ÞO3 solid solutions are all close to
those provided by the 3D-random-Ising universality class.
The inherent reason for which these critical exponents are
close to those of the 3D-random-Ising universality class
rather than of the ‘‘pure’’ 3D-Ising model originates from
the (random) alloying distribution of the Ti and Zr atoms in
the system. As a matter of fact, we numerically found that
switching off the alloying effects in the total energy of our
effective Hamiltonian (such as to create an hypothetical
simple system, known as the virtual crystal alloy and in
which Ti and Zr atoms are all replaced by a virtual identical
atom [32]) leads to critical exponents that are now rather
close to those provided by the pure 3D-Ising model [33].
Finally, the temperature interval of the critical region in

PbðZr0:5Ti0:5ÞO3 was estimated to range between the Curie
temperature, TC, and the so-called Ginzburg temperature
[17,18], TG, with "crit ¼ jTG � TCj=TC ¼ 4:5� 3:5�
10�3, by focusing on hp2i � hpi2 and hpi2 (in the critical
region, the order parameter’s fluctuation should exceed the
value of the order parameter). Interestingly, our estimated
mean value of "crit is in between the value of 10�4 esti-
mated by Ginzburg in BaTiO3 [18] and the value of 6�
10�2 estimated by Clarke and Glazer from some experi-
mental data on PbðZr0:9Ti0:1ÞO3 [14].
In conclusion, we investigated critical behaviors in dis-

ordered PbðZr0:5Ti0:5ÞO3 bulks by computing nontrivial
statistical quantities from a first-principles-based scheme
combined with a Monte Carlo technique. PbðZr0:5Ti0:5ÞO3

bulks exhibit critical behaviors with critical exponents all
differing from those provided by the classical mean-field
approach, while being consistent with those associated
with the 3D-random-Ising universality class. Our study
thus resolves a long-standing controversy: it undoubtedly
proves that ferroelectrics can belong to universality classes
typically found in ferromagnets, despite the fact that long-
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FIG. 2 (color online). Log-log plot of (a) the maximum value
of the dielectric susceptibility and (b) hpðTcÞi (in arbitrary units),
as a function of the supercell dimensional, L.
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range dipole-dipole interactions are much stronger than
short-range interactions in ferroelectrics, unlike in ferro-
magnets. We are thus confident that our present work leads
to a broad, general knowledge of phase transitions in
dipolar systems, which is of fundamental and technological
importance.
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