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A theoretical description for the equilibrium states of a large class of models of two-dimensional and
geophysical flows is presented. A statistical ensemble equivalence is found to exist generically in these
models, related to the occurrence of peculiar phase transitions in the flow topology. The first example of a
bicritical point (a bifurcation from a first toward two second order phase transitions) in the context of
systems with long-range interactions is reported. Academic ocean models, the Fofonoff flows, are studied

in the perspective of these results.

DOI: 10.1103/PhysRevLett.102.104501

In many physical systems, the dynamics of particles or
fields is not governed by local interactions. For instance,
stellar systems in astrophysics [1], vortices in two-
dimensional and geophysical flows [2], unscreened
plasma, or models describing interactions between waves
have interaction potentials which are not integrable [3].

One of the striking features of systems with long-range
interactions is the generic existence of negative heat ca-
pacity. This means that the temperature decreases as the
energy is increased. This very strange phenomenon is
possible as a consequence of the lack of additivity of the
energy [3] and is related to the fact that equilibrium states
for the microcanonical ensemble of statistical mechanics
may not be equilibrium states for the canonical ensemble
(ensemble inequivalence). This was first predicted in the
context of astrophysics [4]. For two-dimensional flows, the
existence of such an inequivalence has been mathemati-
cally proved for point vortices [5] (without explicit com-
putation), and numerically observed in a Monte Carlo
study of point vortices in a disk [6] and in a particular
situation of a one layer quasigeostrophic (QG) model [7].
The one layer QG model is the simplest model of large
scale (two-dimensional) geophysical flows [8]. One of the
novelties of the current work is the prediction of ensemble
inequivalence, with analytical computation of the associ-
ated phase transitions, for a very large class of models
including Euler equations or QG models. In systems with
long-range interactions, as in usual thermodynamics, one
observes transition phenomena such as critical points when
changing external parameters. Phase transitions are ex-
tremely important as they induce huge physical changes
in the system considered. For instance, such phase transi-
tions lead to drastic changes in the flow structure, as
illustrated by streamline modifications in Fig. 1. In systems
with long-range interactions, some of those transitions can
be associated with the appearance of inequivalence be-
tween statistical ensembles [9]. As a generalization of
Landau’s classification, all theoretically possible routes
to ensemble inequivalence and their relations to phase
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transitions in the different statistical ensembles have been
classified and linked together [10]. Astonishingly, some of
the transitions theoretically predicted have never been
observed, either in models nor in real physical systems.
This is, for instance, the case of the ensemble inequiva-
lence associated with bicritical points (a bifurcation from a
first towards two second order phase transitions) and for
second order azeotropy (the simultaneous outbreak, from
nothing, of two second order phase transitions). For the
first time, we exhibit bicritical points and azeotropy in
systems with long-range interactions and their associated
ensemble inequivalence. Interestingly, from a physical
point of view, the bifurcations associated with bicritical
points are governed mainly by the domain geometry.

The statistical prediction of large scale geophysical
flows is a promising application field for the statistical
mechanics of systems with long-range interactions. For
instance, the structure of Jupiter’s troposphere has been
successfully explained using the Robert-Sommeria-Miller
(RSM) equilibrium theory [11]. One of the major scopes of
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FIG. 1 (color online). Evolution of Fofonoff flows (statistical
equilibrium of the one layer QG model) and their inverse
temperature 3, when the energy E is varied, for a given, nonzero
circulation. Insets are isolines of the stream function ¢ in a
rectangular domain. For higher domain aspect ratio 7 (right-hand
panel) there is a discontinuity of d8/dE. This corresponds to a
second order phase transition, above which two equilibrium
states coexist.
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this field is to go towards applications to Earth’s oceans.
All textbooks in oceanography present the Fofonoff flows,
which have played an important historical role [8,12]. They
are particular steady states of the one layer QG model,
corresponding to the low energy solution depicted in Fig. 1.
In this Letter, we propose a theoretical description of
Fofonoff flows and obtain a new type of solutions and of
phase transitions (the high energy solutions in Fig. 1),
which relates for the first time these models with properties
associated with ensemble inequivalence.

Some of the phase transitions analyzed here have al-
ready been described in a similar context [13]. In particu-
lar, they report a transition from a monopole to a dipole
when the aspect ratio of the domain increases above a
critical value. However, the present theoretical treatment
is different as we use directly general relations between
constrained and unconstrained variational problems, and
provide then the first ensemble inequivalence results for
these phase transitions.

To simplify, we present in the following the computa-
tions for the Euler equations, but our results generalize
easily to a large class of geophysical models.

Euler equations and variational problems.—The 2D
Euler equations describe a perfect flow. They can be ex-
pressed as a transport equation for the vorticity @ by a
nondivergent velocity field u: d,w +u-Vw = 0. The
velocity and the vorticity fields are related by a stream
function ¢: u, = —d,¢, uy, = 9,4, and w = d,u, —
dyu, = Ayp. We study here the case of a closed domain
D. The flow evolution is fully determined by the knowl-
edge of an initial vorticity field. The 2D Laplacian may be
inverted with boundary condition ¢ = 0 (there is no nor-
mal flow across the boundary). Because the Green function
of the Laplacian diverges logarithmically in 2D, the inter-
actions between vorticity patches is long ranged [3].

The 2D Euler equations are known to develop complex
vorticity filaments at finer and finer scales. This makes
almost impossible any attempt to a deterministic approach
to those systems. Rather than describing the fine-grained
structures, equilibrium statistical theories of two-
dimensional turbulent flows, assuming ergodicity, predict
final organization of the flow on a coarse-grained level [2]:
a mixing entropy is maximized by taking into account the
constraints, namely, all the flow invariants, which are the
energy £ = (u?)/2 = —(w)/2 , and the Casimirs C, =
(g(w)), where g is any continuous function. The brackets
() stand for a spatial average over the whole domain D.
This theory predicts for the statistical equilibrium state a
functional relation @ = f(), which characterizes a
steady state of the Euler equation. The theory is predictive,
but it requires the knowledge of all the flow invariants that
can be computed from any initial vorticity field. In prac-
tice, the analytic computation of RSM equilibrium states is
a difficult task: one has to solve a variational problem
involving an infinite number of constraints. It has been
proposed to study simpler variational problems, with only

a few constraints, to compute RSM statistical equilibria
[14]. In particular, it has been shown that any maximizer of

S(ET) = max{S[w] = —%<w2>|c1[w] —Tand€[w] = E),

where S is sometimes referred to as generalized entropy, is
also a RSM equilibrium state (it maximizes a mixing
entropy), but the converse is wrong. The particular choice
of a quadratic functional for S will be discussed later.

We have kept only the constraints on the energy and on
the circulation C;[w] = (w). Let us introduce the Lagrange
parameters S (inverse temperature) and 7y (fugacity) asso-
ciated with these constraints, in order to compute the
critical points of the variational problem: 6S — B6E —
v6C = 0, where 0 refers to the first variations of the
functional with respect to w. Then w = By — 7y, where
B, v are eventually computed by using the constraints on
E,T'. To conclude, the study of this variational problem
provides any RSM equilibrium state associated with a
linear w — i relation, and makes possible a classification
of those states in a phase diagram (I', E).

Statistical ensembles.—The problem introduced in the
previous paragraph involves two constraints E and I". The
corresponding statistical ensemble will be referred to as
microcanonical, by analogy with usual thermodynamic,
with the equilibrium entropy S(E, I'). Dealing with uncon-
strained variational problems is much easier than dealing
with constrained ones. Moreover, solutions for a varia-
tional problem are necessarily solutions for a more con-
strained dual problem [9]. In order to solve the
microcanonical problem, it is convenient to consider the
grand-canonical ensemble with the thermodynamical po-
tential J(B, y) = min, {J[w] = =S + BE + yC} and the
canonical ensemble, by keeping only the constraint on the
circulation, with the free energy F(B, ') = min {Flw] =
—S + BEIC[w] =T}. Each solution for the grand-
canonical problem is also a canonical solution, and each
solution of the canonical problem is also a microcanonical
solution, but the converse is wrong in general [9]. For given
values of E and I, the microcanonical ensemble is said to
be equivalent to the (grand)canonical ensemble, when a
(grand)canonical solution having the energy E and the
circulation I' exists. Otherwise there is inequivalence be-
tween microcanonical and (grand)canonical ensembles.

Laplacian eigenmodes.—The vorticity can be decom-
posed on the complete, orthonormal basis {e;(x, y)};en Of
Laplacian eigenmodes: w = Y ;w;e;, where Ae; = — \e;,
with the A; > 0 in increasing order. Then

2
i

2
s=-¥%5 =3y

The grand-canonical problem is to find the minimum of a
quadratic functional [ w]. The canonical problem can be
transformed also into a quadratic unconstrained variational
problem: the constraint on the circulation is used to express

C= Z<€i>wi-
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one coordinate as a linear combination of the others: w; =
' =3, wien)/(e) (ey) # 0 for a closed domain).

Solution of quadratic variational problems.—We look
for the minimum of quadratic functionals, with linear parts.
Let Q and L be the purely quadratic and linear parts,
respectively. Then we have three cases. (1) The smallest
eigenvalue of Q is positive: the minimum exists and is
achieved by a unique minimizer. (2) At least one eigen-
value of Q is strictly negative. There is no minimum.
(3) The smallest eigenvalue of Q is zero (with eigenfunc-
tion ey). A minimum exists only if L[ey] = 0. The neutral
direction {aey},cp is the ensemble of minimizers.

Grand-canonical ensemble.—Computations are not dif-
ficult; their details will be provided in a companion paper
[15]. We start with the easiest, grand-canonical problem.
We look for the range of parameters /3, y such that a grand-
canonical solution exists (positive quadratic part): it gives
the condition 8> —A;, whatever y. The corresponding
equilibria are written (B, y). We then compute
Elw(B, y)] and Clw(B, y)]: it appears that those states
fill the area below a parabola E, (I') = I'?/(2A,(e;)?) in
the plane (I', E) (represented as a solid blue parabola in
Figs. 2(b-i) and 2(b-ii)].

Ensemble inequivalence area.—We thus conclude that £
and I values above this parabola do not correspond to any
grand-canonical solution. This is a situation of ensemble
inequivalence. In order to find equilibria with (I, E) values
above the parabola, we have to consider a more constrained
variational problem.

Canonical and microcanonical ensembles.—For a
given value of the constraint I', we look for the range
of parameters B such that a canonical solution w(g, I')
exists: it gives the condition 8 = — min{A], A"}, where A}
is the smallest of the A; with the condition {¢;) =0
and where A* is the smallest zero of f(x)=1—
xY = 1{e;)*/(x — A;) (see Eq. 3.8 in [13] for a different
interpretation of this function). We then compute

b-i)

FIG. 2 (color online).

Elw(B,T")] and check that all possible values of E corre-
spond to a canonical solution.

In principle, we could eventually have to solve the
microcanonical problem, but it is not necessary since the
whole range of admissible values of E and I" are covered by
canonical solutions. To conclude, there is inequivalence
between grand-canonical and canonical ensembles and
equivalence between canonical and microcanonical en-
sembles. Now that states with all values of (I, E) are found,
we can compute and plot the entropy S(I', E) [see
Figs. 2(a-i) and 2(a-ii)]. In this figure, the ensemble in-
equivalence area is clearly recognized as it is known to be
characterized by regions where the entropy S(E, I') does
not coincide with its concave envelope [9].

Geometry governed criterion.—We deduce from the
previous analysis a criterion that provides two classes of
phase diagrams, referred as case (i) (min{A*, A} = A¥)
and case (ii) (min{A*, A} = A}) (see [13] for a discussion
independent of ensemble inequivalence). It depends only
on the Laplacian eigenvalues and eigenmodes, which de-
pend themselves only on the domain geometry. Note that if
the domain does not admit any symmetry axis, there is
generically no zero-mean Laplacian eigenmodes, so A}
does not exist and then only case (i) is possible. By
contrast, if the domain admits a symmetry axis, the sign
of A] — A" must be computed. In the case of a rectangular
domain, there is a critical aspect ratio 7. =~ 1.12, as re-
ported in [13]; case (i) and case (ii) correspond, respec-
tively, to 7 < 7. and 7 > 7. It is expected that any domain
geometry sufficiently stretched in a direction perpendicular
to its symmetry axis is in case (ii).

Description of phase transitions.—Let us consider
first the phase diagram in case (i) [see Figs. 2(a-i), 2(b-1),
and 2(c-i)]. When the line I' = 0 is crossed, the flow
structure changes from a monopole of a given sign to a
similar monopole with the opposite sign, with coexistence
of both states on the line I' = 0 [Fig. 2(b-i)] [13]. The

c—i)

(a) Equilibrium entropy S(E, I'). (b) Lines of microcanonical phase transition. Red straight line: first order;

dashed, green parabola: second order; solid blue parabola: ensemble inequivalence boundary. (c¢) y = 95/l vs I' at fixed E.
(d) Transition from a first to two second order phase transitions (bicritical point Bc), when the aspect ratio 7 is varied and E is held

fixed.
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discontinuity of y(I') = a§/dI' [see Fig. 2(c-i)] indi-
cates that this corresponds to a first order transition.
Let us then consider the phase diagrams in case (ii)
[Figs. 2(a-ii), 2(b-ii), and 2(c-ii)]. Whatever the values of
E, T located below a second parabola E X (I'), represented
as a green dashed line, one can show that there exits a
single canonical solution. When the parabola is crossed,
there is a discontinuity of 925/dI% [see Fig. 2(c-ii)]. It
corresponds thus to a microcanonical second order transi-
tion line. Above this parabola, 8 = — A/ everywhere, each
point corresponds to two equilibrium states, differing only
by the value of their projection on the zero-mean Laplacian
eigenmode e}(x, y) associated with A} (a dipole). The
choice of one state among the two possibilities breaks
the system symmetry. At high energy, this contribution
dominates: the flow is then a dipole.

The phase transitions described all take place in the
ensemble inequivalence area. They have unusual thermo-
dynamic properties: a positive jump of vy in Fig. 2(c-1) and
positive values of d2S/dI'? in Fig. 2(c-ii). This last pecu-
liarity is equivalent for I' of what would be negative heat
capacity ¢ = 9%S/9E? for the energy E.

Bicritical point.—Finding critical points or triple point
requires the tuning of two external parameters (codimen-
sion 2). Other examples of codimension 2 phase transition
associated with symmetry breaking are bicritical points
and second order azeotropy (see [10] and references
therein for examples). Before this Letter, none of these
have either been observed in systems with long-range
interaction or been associated with ensemble inequiva-
lence. Let us apply our previous general analysis to the
case of a rectangle with aspect ratio 7 and fixed energy.
Changing 7 modifies the eigenvalues {A;}. As illustrated
in Fig. 2(d), we then predict a bifurcation from a micro-
canonical first order transition line to two second order
transition lines (a bicritical point) at the point 7. = 1.12,
I' =0 (Bc), corresponding to the shift from case (i) to
case (ii) phase diagrams.

Nonquadratic entropy functionals.—In the preceding
discussion, we have treated the case of a quadratic gener-
alized entropy S[w]. It corresponds to the choice of a
Gaussian prior distribution, when the Casimir functionals
are treated canonically [9]. It is thus a very natural first
choice. Moreover, we argue that the scope of our results is
much wider because phase transitions are generally very
robust phenomena. We will assess this general idea more
precisely in our longer companion paper [15] by studying
the limit of small energy of the generalized entropy max-
imization of S[w] = (s(w)) with any concave s. In this
limit, we recover at leading order a problem with a qua-
dratic entropy.

Generalization to geophysical flows.—The previous
theoretical analysis is exclusively based on the minimiza-
tion of quadratic functionals. Then it is clear that similar
results exist for a whole class of models having linear and
quadratic invariants and such that the equilibrium RSM

theory applies. We thus predict similar phase transitions
and ensemble inequivalence for the whole class of QG
models [8] (with one or more layers, with or without
topography, etc.). The one layer QG equations on a beta
plane is one example: the advected quantity (d,q +
uVgq = 0) is now the potential vorticity (¢ = A — by =
By — ). Its lowest energy equilibria are the celebrated
Fofonoff flows, that can be computed explicitly by a
boundary layer approximation in the limit g — +o0 [12].
As in the Euler case, all the steady states can be formally
computed in terms of the Laplacian eigenmodes. The
previous analysis of the quadratic variational problems
allows us to select the values of 8 and 7y corresponding
to statistical equilibria, and then to compute their energy,
circulation, and entropy. Standard numerical procedures
can then be applied to compute Laplacian eigenmodes
(for any domain geometry) and to draw the flow structure
for different values of the parameters, as done Fig. 1. The
previous analysis relates for the first time the properties of
these flows with phase transitions and ensemble inequiva-
lence. Among other interesting properties not described
here, the phase diagram of such academic ocean models
can present second order azeotropy. This will be discussed
in a companion paper [15], with detailed computations.
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