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The quantum effects of radiation pressure are expected to limit the sensitivity of second-generation

gravitational-wave interferometers. Though ubiquitous, such effects are so weak that they have not been

experimentally demonstrated yet. Using a high-finesse optical cavity and a classical intensity noise, we

have demonstrated radiation-pressure induced correlations between two optical beams sent into the same

moving mirror cavity. Our scheme can be used to retrieve weak correlations at the quantum level and has

applications both in high-sensitivity measurements and in quantum optics.
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The quantum effects of optomechanical coupling, the
radiation-pressure coupling between a moving mirror and
an incident light field, were first studied in the framework
of gravitational-wave detection [1,2], enforcing quantum
limits to the sensitivity of large-scale interferometers [3].
Overcoming these limits [4] was a major motivation for the
quantum optics experiments performed shortly thereafter,
such as squeezing of the light field [5,6] or quantum non-
demolition (QND) measurements [7]. Such pioneering ex-
periments were performed with nonlinear optical media,
but optomechanical coupling was soon proposed as a
candidate nonlinear mechanism of its own [8–10], based
upon correlations between light intensity and mirror dis-
placement induced by radiation pressure.

The first experiments fell short of the quantum regime
[11–13] and even though recent ones demonstrated a much
larger optomechanical coupling [14–19], they mainly fo-
cused on the possible demonstration of the quantum
ground state of a mechanical resonator [20]. To observe
the optomechanical correlations, two beams have to be sent
upon the moving mirror (see Fig. 1): the intensity fluctua-
tions of the first, intense, signal beam drive the mirror into
motion by radiation pressure, whereas the resulting posi-
tion fluctuations are monitored through the phase of the
second, weaker, meter beam. As the intensity fluctuations
of the signal beam are unaltered by reflection upon the
mirror and as far as the radiation pressure of the meter
beam is negligible, the intensity-phase correlations observ-
able between the two reflected beams provide a direct
measurement of the optomechanical correlations.

To monitor these radiation-pressure effects down to the
quantum level and hence perform a real-time QND mea-
surement of the signal intensity via the meter phase [10],
one has first to enhance the optomechanical coupling by
using a high-finesse cavity with a moving mirror, as shown
in Fig. 1. The position fluctuations �xrad induced by the
quantum intensity fluctuations of the signal beam also have
to be the dominant noise source, which requires to lower
the thermal fluctuations �xT of the moving mirror. For a

harmonic oscillator of mass M, resonance frequency
�M=2�, and mechanical quality factor Q, the correspond-
ing ratio between the radiation pressure and thermal noise
spectra can be written [10]
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where T is the environment temperature, F the cavity
finesse, � the optical wavelength, and Pin the incident
intensity of the signal beam. The stated values have all
already been achieved independently in various state-of-
the-art optomechanical systems [14–19,21,22], but com-
bining the favorable mechanical behavior of NEMS [21]
with a very high optical finesse [22] is an even greater
experimental challenge.

FIG. 1 (color online). Principle of the direct observation of
optomechanical correlations. Both an intense signal beam and a
weaker meter beam are sent into a resonant high-finesse cavity
with a moving mirror. Intensity fluctuations of the signal beam
are imprinted by radiation pressure onto the position fluctuations
of the moving mirror, and, subsequently, onto the phase fluctua-
tions of the meter beam. The two reflected beams then display
intensity-phase correlations, retrieved with both a photodiode
and a homodyne detection.
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In this work, we report the observation of optomechan-
ical correlations measured close to the quantum level. To
reach a ratio (1) as large as possible, we favor the optical
characteristics and use a fused silica moving mirror, which
provides both a very high optical finesse [22] and mechani-
cal quality factor [23], at the expense of a larger mass. The
optomechanical correlations have then been measured with
a tiny classical intensity modulation of the signal beam that
mimics at a higher level its quantum fluctuations [22,24].

Our experimental setup is based on a single-ended opti-
cal cavity, with a 1-inch fused silica cylindrical input
mirror. The moving mirror, used as end mirror, is a
plano-convex 34-mm diameter and 2.5-mm thick mirror,
which displays Gaussian internal vibration modes [23]. We
work at frequencies close to a mechanical resonance with
the following optomechanical characteristics, deduced
from the thermal noise spectrum at room temperature:
�M=2� ¼ 1:125 MHz, M ¼ 500 mg, Q ¼ 500 000.

The low roughness of the silica substrates allows for
optical coatings with very low losses: we have obtained a
cavity finesseF ¼ 330 000, mainly limited by the 20-ppm
transmission of the input mirror. This is crucial for quan-
tum optics experiments for which loss has to be avoided to
get large correlations between intracavity and reflected
fields. We use a short, 0.33-mm long, cavity in order to
keep a sufficient cavity bandwidth (�cav=2� ¼ 700 kHz)
and to prevent laser frequency noise from limiting the
displacement sensitivity. The cavity is operated in vacuum
to increase the mechanical quality factors.

The cross-polarized signal and meter beams entering the
cavity are provided by a Ti:sapphire laser working at
810 nm. As the cavity is birefringent (with a 5-MHz
frequency mismatch between the two optical resonances),
two acousto-optic modulators (AOM in Fig. 2) indepen-
dently detune the two beams so that they both match the
cavity resonance. The overall resonance is controlled by
locking the laser frequency via a Pound-Drever-Hall tech-
nique: the incident signal beam is phase-modulated at
20 MHz by a resonant electro-optical modulator
(REOM), and the resulting intensity modulation of the
reflected beam provides the error signal. A mode cleaner
cavity filters potential degradations of the spatial profile of
both beams, while their intensities after the mode cleaner
are stabilized by a servo-loop which drives the amplitude
control of the AOMs.

The phase fluctuations �’out
m ðtÞ of the reflected meter

beam are monitored by a homodyne detection, with a local
oscillator derived from the incident meter beam and phase-
locked in order to detect the phase quadrature. For an
incident power of 50 �W, one gets a shot-noise-limited

displacement sensitivity of 2:7� 10�20 m=
ffiffiffiffiffiffi
Hz

p
at fre-

quencies above 200 kHz. Intensity fluctuations �Iouts ðtÞ of
the reflected signal beam are monitored by a high-
efficiency photodiode. We have carefully eliminated un-
wanted optical reflections so that the optical rejection of
the double-beam system is higher than 35 dB: the phase

fluctuations of the meter beam are insulated from the
intensity fluctuations of the signal beam in such a way
that observable effects of the signal beam are necessarily
induced by intracavity radiation pressure.
In order to mimic the quantum fluctuations of radiation

pressure, the signal beam is intensity-modulated with an
electro-optic modulator (EOM) before entering the cavity
to produce a classical intracavity radiation-pressure noise
[22,24]. The digitized driving noise is centered at a fre-
quency �c close to the mechanical resonance frequency
�M, and has a typical bandwidth of a few hundreds of Hz,
larger than any bandwidth used in the correlations acquis-
ition process. To generate a Gaussian intensity noise of the
form �Iins ðtÞ ¼ AðtÞ cosð�ctþ ’ðtÞÞ, where AðtÞ is a ran-
dom function with a Gaussian distribution around 0 and
’ðtÞ a randomly distributed phase, we decompose the noise
into its quadratures [25]:

�Iins ðtÞ ¼ Xin
Is
ðtÞ cosð�ctÞ þ Yin

Is
ðtÞ sinð�ctÞ: (2)

The quadratures are produced from a dual-channel arbi-
trary waveform generator Tektronix AFG3022B, and then
summed to drive the EOM. The slowly-varying Gaussian
noise functions Xin

Is
ðtÞ and Yin

Is
ðtÞ are randomly generated by

a computer and loaded into the generator as amplitude
arrays.
The experiment is performed as follows. Both optical

beams are locked onto the resonance of the cavity, with
incident powers Pin

s ¼ 150 �W for the signal beam and
Pin
m ¼ 500 �W for the meter. The EOM drives a classical

radiation-pressure noise with an amplitude level as com-

pared to thermal noise of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sradx =STx

p ’ 5, and with a center
frequency �c=2� ¼ 1:123 MHz, about 600 mechanical

FIG. 2 (color online). Experimental setup. The laser beam is
split in two orthogonally polarized beams, which are both sent
into the moving mirror cavity. A resonant electro-optical modu-
lator (REOM) is used to lock the laser onto the optical resonance
via a Pound-Drever-Hall technique. The residual birefringence
of the cavity is compensated by the frequency shift of two
acousto-optic modulators (AOM), also used to stabilize the
intensities of both beams after their spatial filtering by the
mode cleaner cavity. A second EOM modulates the intensity
of the signal beam to mimic quantum radiation-pressure noise.
For simplicity, most polarizing elements are not shown.
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linewidths below the mechanical resonance. The experi-
mental signals are independently acquired by two spectrum
analyzers Agilent MXA set in I=Q mode in order to
directly extract the quadratures Xout

Is
ðtÞ, Yout

Is
ðtÞ, Xout

’m
ðtÞ,

and Yout
’m
ðtÞ of the reflected signal intensity and meter phase,

respectively. Both analyzers are locked at the same central
frequency �c with an analysis bandwith of 400 Hz, and
synchronously triggered with the waveform generator.
Temporal evolution of the quadratures are then acquired
over a span time of 200 ms, equal to the scan time of the
digitized amplitude-modulation arrays of the generator.

Figure 3 presents the observed phase-space trajectories:
clear correlations are evident between the intensity noise of
the signal beam (left) and the meter phase noise (right).
Neglecting optical losses and irrelevant noises such as the
quantum fluctuations of the meter beam, this can be inter-
preted from the following input-output relations for the
fluctuations at frequency �c [10]:

�Iouts ½�c� ¼ 1þ i!c

1� i!c

�Iins ½�c�; (3)

�’out
m ½�c� ¼ 8F

�ð1� i!cÞ�x½�c�; (4)

where!c ¼ �c=�cav, and �x ¼ �xT þ �xrad is the mirror
motion, including the thermal noise and the radiation-
pressure noise given by

�xrad½�c� ¼ 8F
�ð1� i!cÞ @�½�c��Iins ½�c�; (5)

where �½�c� is the mechanical susceptibility of the mov-
ing mirror. The reflected signal intensity noise reproduces
the incident one, with a global phase shift depending on!c

[Eq. (3)], whereas the reflected meter phase reproduces the
incident signal intensity �Iins via the mirror motion [Eqs.
(4) and (5)]. It is superimposed to the thermal noise �xT of
the mirror which is responsible for the small differences
observed between the two phase-space trajectories in
Fig. 3. Other noises such as the quantum phase noise of
the incident meter beam, which limits the sensitivity of the
displacement measurement, are negligible in our current

setup with a level at least 15 dB below the thermal noise.
Also note that the meter phase in Fig. 3 is calibrated in
terms of the equivalent displacements of the moving mir-
ror, with a typical amplitude of 10�15 m, and the curve has
been rotated in phase space in order to compensate for the
global phase shifts due to !c and to the mechanical re-
sponse �½�c�.
We have obtained similar results with a center frequency

�c closer or equal to the mechanical resonance frequency.
In that case, the resonance amplifies the radiation pressure
and thermal displacements by a factor up to the quality
factor Q, but the phase shift of the mechanical response
across the resonance frequency has to be taken into account
to deconvolve the observed data. We focus in the following
on experimental results obtained at low frequency.
The results can be made more quantitative by computing

the correlation coefficient CIs;’m
defined as

CIs;’m
¼ jh�Iouts �’out?

m ij2
hj�Iouts j2ihj�’out

m j2i ; (6)

where the brackets h. . .i stand for a temporal average. We
obtain a coefficient CIs;’m

’ 0:96 for the data presented on

Fig. 3, in perfect agreement with the value ð1þ STx =S
rad
x Þ�1

deduced from Eqs. (3)–(5).
As in usual QND measurements [7], optomechanical

correlations can also be quantified by the knowledge we
gain on the signal intensity from the measurement of the
meter phase. The resulting distribution is given by the
conditional fluctuations

�Isjm ¼ �Iouts � h�Iouts �’out?
m i

hj�’out
m j2i �’out

m : (7)

Figure 4 presents the respective probability distributions in
phase space for the uncorrected intensity fluctuations �Iouts

and the conditional ones �Isjm, obtained as normalized his-

tograms of the data of Fig. 3. The shrinking of the distri-
bution is related to the lower conditional dispersion, re-
duced by a factor ’ 5, as can be deduced from Eqs. (3)–(7):

�Isjm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CIs;’m

q
�Iouts ’ 0:2�Iouts : (8)

FIG. 3 (color online). Phase-space trajectories of the intensity
noise of the signal beam (left) and the phase noise of the meter

beam (right), in the case
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sradx =STx

p ’ 5. The phase noise is
calibrated as displacements of the moving mirror.

FIG. 4 (color online). Probability distributions in phase space
of the signal intensity fluctuations �Iouts (left) and of the condi-
tional fluctuations �Isjm deduced from the meter measurement

(right). Note the sharper peak, related to the lower conditional
variance, and the factor 5 between the two vertical scales.
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Our experimental setup enables to demonstrate optome-
chanical correlations even in the case of radiation-pressure
effects smaller than thermal noise ðSradx � STx Þ. In such a
case, as the reflected meter phase fluctuations �’out

m are
mainly related to random thermal noise, the correlation
coefficient deduced from the temporal average of a single
run has little meaning, and experimental values fluctuate
from one run to the other. Nevertheless, repeating such runs
and averaging all these experimental outcomes eventually
yields a steady value.

Figure 5 presents the estimate of the correlation coef-
ficient obtained with Sradx =STx ’ 0:03, as a function of
the number N of runs averaged, up to N ¼ 500. The
resulting correlation coefficient tends to its small but non-
zero expected value ð1þ STx =S

rad
x Þ�1 ’ 0:03, with a statis-

tical uncertainty at least 10-times smaller (2:5� 10�3 for
500 averages).

Such correlations are still at the classical level but
similar correlations are expected in the quantum regime
at low temperature. Quantum radiation-pressure noise is
about 30 dB below the classical noise used for Fig. 5, so
that the ratio Sradx =STx is equal to 0:03� 10�3 � 300=4 ’
2� 10�3 for quantum noise at a cryogenic temperature of
4 K. The resulting quantum correlations could be recov-
ered with 50 000 averages (uncertainty of 2:5� 10�4),
with a total acquisition time of 50 000� 200 ms ’ 3 h,
easily reachable with our experimental setup.

We have thus demonstrated optomechanical correlations
between two light beams. Averaging the experimental
signal once working at low temperature should enable to
retrieve the corresponding quantum correlations and hence
demonstrate radiation-pressure noise. With an upgrade of
our experimental setup, one can also envision radiation-
pressure induced quantum optics experiments, such as
optomechanical squeezing [8] or QND measurements
[9,10].
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