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Transport in a quantum point contact (QPC) can be used to generate many-body entanglement of Fermi

seas in the leads. A universal relation is found between the generated entanglement entropy and the

fluctuations of electric current, which is valid for any protocol of driving the QPC. This relation offers a

basis for direct electric measurement of entanglement entropy. In particular, by utilizing space-time

duality of 1D systems, we relate electric noise generated by opening and closing the QPC periodically in

time with the seminal S ¼ 1
3 logL prediction of conformal field theory.
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Recent years have witnessed a burst of interest in the
phenomena of quantum entanglement, and, in particular, in
entanglement entropy [1,2], a fundamental characteristic
describing quantum many-body correlations between two
parts of a quantum system. This quantity proved useful in
analyzing quantum critical phenomena [3–5], quantum
quenches [6–9], topologically ordered states [10–12], and
strongly correlated systems [13]. Entanglement entropy is
also of fundamental interest for quantum information the-
ory as a measure of the resources available for quantum
computation [14].

The task of measuring entanglement entropy in a system
comprised of a large number of particles is substantially
more challenging than detecting entanglement of few par-
ticles, such as in the recent work on entangled photons
[15]. Since realistic measurement processes cannot simul-
taneously access all degrees of freedom in a many-body
system, the quantities like the full many-body density
matrix, which depends on coordinates of all particles in
the system, are very difficult to measure.

As we shall see, the situation with the entanglement
entropy is different. In this Letter, we establish a relation
between the entropy and quantum noise in a quantum point
contact (QPC) [16]. The QPC is an electron beam splitter
with tunable transmission and reflection. In our approach,
it serves as a door between electron reservoirs, which can
be opened and closed on demand (see Fig. 1).

The entanglement entropy is dominated mostly by
charge-neutral processes in which the leads exchange
particles with no net charge transfer. Yet, somewhat sur-
prisingly, we find that a measurement of the fluctua-
tions of electric current flowing through the QPC is suffi-
cient for determining the full entanglement entropy. Here,
we derive the noise-entropy relation for noninteracting
fermions.

The process of connecting and then disconnecting two
parts of the system is a space-time dual of the setting
considered in Refs. [2–5], where the many-body ground
state of a translationally invariant system is analyzed using
a finite region in space. In our case, a window in time is

used, t0 < t < t1, during which particles can delocalize
among the reservoirs, making them entangled.
The relation between entanglement and electric noise is

central for the proposals [17,18] to use current partitioning
by a QPC for producing entangled particle pairs. A relation
between entanglement entropy and another measurable
quantity, particle number fluctuations, was considered in
Ref. [19]. Generation of entanglement was also analyzed
for critical Hamiltonians [6], for generic Hamilton-
ians [7,9], as well as for a QPC under bias voltage [20].
Here, we obtain a general relation between entangle-

ment production and the Full Counting Statistics (FCS)
[21] which describes the statistics of transmitted charge.
The central quantity in the FCS approach is the generating
function �ð�Þ ¼ P1

n¼�1 Pne
i�n, where Pn is the probabil-

ity to transmit n charges in total. This function encodes all
FCS higher moments:

log�ð�Þ ¼ X1
m¼1

ði�ÞmCm

m!
; (1)

FIG. 1 (color online). Schematic of a quantum point contact
(QPC) with transmission changing in time. The left and right
leads are initially disconnected, then connected at t0 < t < t1,
and then disconnected again. Electron transport, taking place at
t0 < t < t1, leading to electron delocalization among the leads,
current fluctuations, and entanglement production.
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where the cumulants C1, C2, C3 . . . describe properties of
the distribution Pn such as the mean �n, the variance hðn�
�nÞ2i, the skewness hðn� �nÞ3i, etc. The cumulant C2 is
available from routine noise measurement. Recently, C3

has been measured in tunnel junctions [22,23] and in QPC
[24], while cumulants up to 5th order have been measured
in quantum dots [25,26].

Below, we establish a universal relation between FCS
(1) and the entanglement entropy generated in the QPC.
Only even cumulants are shown to contribute to entropy:

S ¼ X
m>0

�m

m!
Cm; �m ¼

� ð2�ÞmjBmj; m even
0; m odd

; (2)

where Bm are Bernoulli numbers [27] (B2 ¼ 1
6 , B4 ¼ � 1

30 ,

B6 ¼ 1
42 . . . ). The first few contributions are

S ¼ �2

3
C2 þ �4

15
C4 þ 2�6

945
C6 þ . . . : (3)

This relation, which is general and valid for arbitrary
driving, can be used to determine the entanglement entropy
from measured values of FCS moments. Similar relation
can be derived for other quantities of interest, such as
Renyi entropies and single copy entropy [28].

In particular, entanglement generated in a QPC switch-
ing on and off, as illustrated in Fig. 1, directly corresponds
to the entanglement entropy found for conformal field
theory, S ¼ c

3 logL, where L is the size of window in space

and c the conformal charge [2,3,5]. In this case, the current
fluctuations are Gaussian (Cm�2 ¼ 0), with a logarithmic
varianceC2 ¼ 1

�2 log
t1�t0
� , where � is a short time cutoff set

by the QPC switching rapidity. Combined with Eq. (3), this
gives entropy S ¼ 1

3 log
t1�t0
� . Below, we discuss how this

logarithmic dependence can be verified using the setup
shown in Fig. 1.

Entanglement entropy is conventionally defined as the
von Neumann entropy Sð�Þ ¼ �Tr� log�, where � is the
reduced density matrix of a pure quantum state, made ‘‘im-
pure’’ by confining it to a certain space region [1,2]. In our
case, the many-body state evolves as a pure state while
the QPC is open (see Fig. 1), after which the reduced
density matrix of the lead L is given by �Lðt1Þ ¼
TrR½Uðt1; t0Þ�0U

yðt0; t1Þ�. Here, �0 is the initial density
matrix of the system, Uðt1; t0Þ describes the many-body
evolution between t0 and t1, and TrR is a partial trace over
degrees of freedom in the lead R.

Entropy production in the lead L as a result of QPC
opening and closing is given by the difference

�S ¼ S½�LðtÞ� � Sð�0Þ; (4)

where the last term accounts for the entropy in the initial
state. Because at finite temperature both terms in Eq. (4)
are proportional to the lead volume, they can be large for
macroscopic leads. The increment �S, however, remains
well defined regardless of the lead volume.

Below, we focus on the zero temperature case when �0 is
a pure state, described as a filled Fermi sea in the full

system Lþ R, in which case the second term in Eq. (4)
vanishes, giving �S ¼ S½�LðtÞ�. We associate with �0 a
Fermi projection operator n in the single-particle space
hEjnjE0i ¼ �E;E0�ðEF � EÞ, where EF is the Fermi energy.

The evolved system is described by a rotated Fermi pro-
jection nU ¼ UnUy, where U is the unitary evolution of
the single-particle modes.
Our first step will be to express the entropy in terms of

single-particle quantities. For a generic Gaussian state,
Wick’s theorem for operator products is satisfied in Lþ
R, and therefore, in particular, it holds in L [29]. Therefore,

the reduced density matrix �L is also Gaussian: �L ¼
Z�1e� ~Hija

y
i aj for some ~H, where i, j label the states in L.

We define a single-particle quantity mij ¼ Tr�La
y
i aj. For

the evolved system, described by nU, Wick’s theorem gives
mij ¼ ðnUÞij. In what follows, it will be convenient to

extend m to Lþ R by setting

M ¼ PLnUPL; (5)

with PL a projection on the modes in L, so thatM ¼ m in L
and M ¼ 0 in R.
Entropy can be expressed through mij for a generic

Gaussian state. Because of Fermi-Dirac statistics, m ¼
ð1þ e

~HÞ�1, which gives ~H ¼ logðm�1 � 1Þ [29]. Extend-
ing m to M in Lþ R, we write the entropy as

S ð�Þ ¼ �Tr½M logMþ ð1�MÞ logð1�MÞ� (6)

where now the trace is taken in the space of single-particle
modes in Lþ R.
Our next step is to relate the quantityM, Eq. (5), and the

FCS generating function (1) which can be expressed as a
functional determinant [21]:

�ð�Þ ¼ detð1� nþ nUyei�PLUe�i�PLÞ: (7)

This determinant must be properly regularized for infi-
nitely deep Fermi sea [30,31]. For our purposes, we pro-
ceed to treat it as a finite matrix and obtain [32,33]

�ð�Þ ¼ det½ð1�MþMei�Þe�i�ðnPLÞU �; (8)

where M is the quantity (5) which defines the entropy.
Now, with the help of the relation (8) we can express the

spectral density of M, Eq. (5), which lies between 0 and 1,
through �ð�Þ. Indeed, changing parameter � to z ¼ ð1�
ei�Þ�1 yields z�M under the determinant: �ðzÞ ¼
det½ðz�MÞe�iðnPLÞU�ðzÞð1� ei�ðzÞÞ�. From that, we can
write the spectral density of M as

	ðzÞ ¼ 1

�
Im@z log�ðz� i0Þ þ A�ðzÞ þ B�ðz� 1Þ; (9)

where the coefficients A and B depend on dimM,
TrðnPLÞU, and C1. Hereafter, we ignore the delta function
terms because z ¼ 0, 1 do not contribute to the expression
(6) for the entropy which we rewrite as

S ¼ �
Z 1

0
dz	ðzÞ½z logzþ ð1� zÞ logð1� zÞ�: (10)
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Now it is straightforward to evaluate S by substituting (1)
into (9) and (10) with �ðzÞ ¼ �� i logð1z � 1Þ, and inte-

grating by parts over z. We obtain series S ¼ P1
m¼1

�m

m! Cm,

where the coefficients �m, after changing the integration
variable in (10) to u ¼ 1

2 logð z
1�zÞ, take the form

�m ¼ ð�2Þm
�

Z 1

�1
du

u

cosh2u
Im

�
i�

2
þ u

�
m
: (11)

After shifting the contour of integration as u ! u� i �2 and

using an identity [34], we arrive at our main result (2).
To compute FCS for a specific driving protocol, it is

convenient to return to the expression (7) and apply the
Riemann-Hilbert (RH) method introduced in [30]. In this
approach, one must factor the time-dependent matrix
RðtÞ ¼ UyðtÞei�PLUðtÞe�i�PL in (7), i.e., find matrix valued
functions X�ðzÞ, analytic in the upper or lower half plane
of complex z, respectively, such that on the real line,

XþðtÞ ¼ X�ðtÞRðtÞ (12)

with normalization X�ðzÞ ! I at jzj ! 1.
We consider QPC switching between the on and off

states several times tð1Þ0 < tð1Þ1 < . . .< tðNÞ
0 < tðNÞ

1 . The RH

problem is solvable in the case of abrupt switching because
R commutes with itself at different times: R ¼ I in the off

state, R ¼ e�i�ðPR�PLÞ in the on state. The solution of the
RH problem is then given by the functions

X�ðzÞ ¼ exp

�
�

2�
ðPR � PLÞ

XN
i¼1

log
z� tðiÞ0 � i0

z� tðiÞ1 � i0

�
: (13)

To find the determinant (7) with these X�, we use the RH
method [30] to evaluate the derivative of log�:

@� log�ð�Þ ¼
Z

tr

�
1

2�i
X�1þ @tX�@�R

�
dt ¼ � �

2�2
G;

G ¼ XN
i;j¼1

log
tðiÞ1 � tðjÞ0

tðiÞ0 � tðjÞ0

þ log
tðiÞ1 � tðjÞ0

tðiÞ1 � tðjÞ1

; (14)

where for i ¼ j, the denominators must be replaced by a
short-time cutoff �. This gives Gaussian charge statistics

�ð�Þ ¼ expð��2C2=2Þ; C2 ¼ 1

2�2
G: (15)

Because in this case the only nonvanishing cumulant is C2,

we have S ¼ �2

3 C2, which gives S ¼ 1
3 log

t1�t0
� for a single

QPC switching, in agreement with the S ¼ 1
3 logL relation

[2]. The case of multiple switching provides realization of
the situation studied in Ref. [5].

These predictions can be tested by measuring noise in a
QPC driven by a periodic train of pulses (see Fig. 2). For N
identical pulses, the relation (14) at large N yields

C2ðNÞ � N

�2
log

sin�
w

�
�
; 
 ¼ 1=T: (16)

Thus, in a periodically driven QPC, there is a finite entropy
production per cycle at a rate dS=dt ¼ 1

3
 log
sin�
w
�
� .

Fluctuations (16) with C2 / N correspond to a dc electric

noise of intensity

S2 ¼ e2


�2
log

sin�
w

�
�
(17)

at frequencies below 
. For a short pulsewidth w, the

dependence (17) becomes S2 ¼ e2

�2 logw� , identical to the

entropy for a single pulse.
The result (17) must be compared with thermal noise. At

a driving frequency 
 ¼ 500 MHz, the effective tempera-
ture corresponding to (17) is Teff ¼ h


�2kB
logsin�
w�
� �

25 mK. In practice, it may be possible to relax the con-
straint due to small Teff by detecting the noise (17) at
frequencies somewhat higher then kBTeff=h, detuned
from the thermal noise spectral window.
How sensitive are these results to imperfections in QPC

transmission? It is straightforward to incorporate transmis-
sionD< 1 in the ‘‘on’’ state in the RH analysis because the
matrices RðtÞ in (7) still commute at different times.
Instead of e�i�, the eigenvalues of the R matrix are now

e�i�� with sin 1
2�� ¼

ffiffiffiffi
D

p
sin 1

2� [35]. Making this change,

we obtain

�ð�Þ ¼ expð��2�G=4�2Þ; (18)

with G given by (14) as above. Because this �ð�Þ is non-
Gaussian, with nonzero higher cumulants, the simplest
way to find the entropy is to use its relation with the
spectral density of M, Eqs. (9) and (10). Using (18) along
with the relations between ��, �, and z, we find

	ðzÞ ¼ G

�2

D

zð1� zÞRe
j1� 2zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 � 4Dzð1� zÞp : (19)

As illustrated in Fig. 3, at D< 1, the function 	ðzÞ van-
ishes in the interval z� < z < zþ, z� ¼ 1

2 ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D

p Þ.
The entropy, found from (10) and (19), has the same

logarithmic dependence (14) on the times tðiÞ0;1 as above,

albeit with a D-dependent prefactor. Thus, the predicted
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FIG. 2 (color online). Noise power (17) in a QPC driven by a
pulse train vs the pulse width. Parameters used: driving fre-
quency 
 ¼ 500 MHz, short-time cutoff � ¼ 20 ps. The noise as
well as the entropy production are symmetric under w ! T � w.
Note that at a narrow pulsewidth w � T, the dependence (17)
reproduces the 1

3 logL [2] behavior of the entropy.
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dependence S � log sin�
w remains robust. The behavior
of the rescaling factor F ¼ SðDÞ=Sð1Þ (Fig. 3 inset) in-
dicates that entropy reduction due to imperfect transmis-
sion in QPC can be attributed mostly to the change in the
second cumulant, C2 ¼ D

2�2 G, with a relatively small cor-

rection due to higher cumulants.

In the presence of a dc voltage bias, we have �ð�Þ ¼
ð1�DþDei�ÞeVt=h [21], whereas the entropy production
rate was found to be dS=dt ¼ � eV

h ½D logDþ ð1�DÞ�
logð1�DÞ� [20]. These quantities satisfy the universal
relation (2), as can be seen most easily from Eq. (6).

From the quantum information perspective, it is inter-
esting to quantify the part of the entropy accessible to local
operations (i.e., respecting particle conservation in each
lead) [20]. In a many-particle system, the change in en-
tropy due to such restriction turns out to be negligibly
small [36].

In summary, we derived a general relation between
entanglement and noise in terms of the full counting sta-
tistics. This relation provides a new framework to inves-
tigate many-body entanglement, and, in particular, its
generation in nonequilibrium quantum systems.

This work was supported in part by the National Science
Foundation under Grant No. PHY05-51164 and by W.M.
Keck Foundation Center for Extreme Quantum
Information Theory (L. L.). We thank Carlo Beenakker
and Gil Refael for useful discussions.

[1] L. Bombelli, R. K. Koul, J. Lee, and R.D. Sorkin, Phys.
Rev. D 34, 373 (1986).

[2] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B 424,
443 (1994).

[3] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev.
Lett. 90, 227902 (2003).

[4] G. Refael and J. E. Moore, Phys. Rev. Lett. 93, 260602
(2004).

[5] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
[6] P. Calabrese and J. Cardy, J. Stat. Mech. (2005) P04010.
[7] S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev.

Lett. 97, 050401 (2006).
[8] M. Cramer, C.M. Dawson, J. Eisert, and T. J. Osborne,

Phys. Rev. Lett. 100, 030602 (2008).
[9] J. Eisert and T. J. Osborne, Phys. Rev. Lett. 97, 150404

(2006).
[10] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404

(2006).
[11] M. Levin and X.G. Wen, Phys. Rev. Lett. 96, 110405

(2006).
[12] S. Dong, E. Fradkin, R.G. Leigh, and S. Nowling, J. High

Energy Phys. 05 (2008) 016.
[13] F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93,

227205 (2004).
[14] C. H. Bennett, H. J. Bernstein, S. Popescu, and B.

Schumacher, Phys. Rev. A 53, 2046 (1996).
[15] S. P. Walborn et al., Nature (London) 440, 1022 (2006).
[16] B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988).
[17] C.W. J. Beenakker, C. Emary, M. Kindermann, and J. L.

van Velsen, Phys. Rev. Lett. 91, 147901 (2003).
[18] P. Samuelsson, E. V. Sukhorukov, and M. Buttiker, Phys.

Rev. Lett. 91, 157002 (2003).
[19] I. Klich, G. Refael, and A. Silva, Phys. Rev. A74, 032306

(2006).
[20] C.W. J. Beenakker, Proc. Int. School Phys. E. Fermi (IOS

Press, Amsterdam, 2006), Vol. 162.
[21] L. S.Levitov and G. B.Lesovik, JETP Lett. 58, 230 (1993).
[22] B. Reulet, J. Senzier, and D. E. Prober, Phys. Rev. Lett. 91,

196601 (2003).
[23] Yu. Bomze et al., Phys. Rev. Lett. 95, 176601 (2005).
[24] G. Gershon, Yu. Bomze, E. V. Sukhorukov, and M.

Reznikov, Phys. Rev. Lett. 101, 016803 (2008).
[25] T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama,

Science 312, 1634 (2006).
[26] S. Gustavsson et al., Phys. Rev. Lett. 96, 076605 (2006).
[27] The Bernoulli numbers Bm are defined by the generating

function x
ex�1 ¼

P1
n¼0 Bn

xn

n! . Asymptotically, jBnj � 2n!
ð2�Þn

for large even n, which shows that the coefficients in (2)

stay bounded for high order cumulants.
[28] J. Eisert and M. Cramer, Phys. Rev. A 72, 042112 (2005);

This paper uses a spectral representation similar to our

Eq. (10).
[29] I. Peschel, J. Phys. A 36, L205 (2003).
[30] B. A. Muzykantskii and Y. Adamov, Phys. Rev. B 68,

155304 (2003).
[31] J. E. Avron, S. Bachmann, G.M. Graf and I. Klich,

Commun. Math. Phys. 280, 807 (2008).
[32] For derivation of Eq. (8), see I. Klich, L. S. Levitov,

arXiv:0804.1377v1, Eqs. (11), (12), and (13).
[33] Our derivation of (8) is similar to that used in: A. G.

Abanov and D.A. Ivanov, Phys. Rev. Lett. 100, 086602
(2008), where constraints on �ð�Þ due to the spectrum of

M being inside the interval 0< z < 1 are also discussed.
[34] We use the integral

R1
0

u2mdu
sinh2u

¼ �2mjB2mj, Eq. (3.525) in:
I. S. Gradshteyn and I.M. Ryzhik, Table of Integrals,

Series, and Products (Academic Press, New York, 1980).
[35] L. S. Levitov and G. B. Lesovik, arXiv:cond-mat/9401004.
[36] I. Klich and L. S. Levitov, arXiv:0812.0006.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

z

S
pe

ct
ra

l m
ea

su
re

 µ
(z

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

QPC transmission D

E
nt

ro
py

 r
ed

uc
tio

n 
S

(D
)/

S
(1

)

second cumulant
contribution

D=1

D=0.4

D=0.6

D=0.95

D=0.8

FIG. 3 (color online). The effect of imperfect transmission in
the QPC. Spectral density ofM, Eq. (19), scaled by G=2�2, for a
QPC driven by pulses with transmission D in the ‘‘on’’ state (see
Fig. 2). At D< 1, the entropy (10) is reduced by a constant
factor (inset) with the S � logsin�
w dependence unchanged.
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