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We study the velocity autocorrelation function of a driven granular fluid in the stationary state in three

dimensions. As the critical volume fraction of the glass transition in the corresponding elastic system is

approached, we observe pronounced cage effects in the velocity autocorrelation function as well as a

strong decrease of the diffusion constant, depending on the inelasticity. At moderate densities the velocity

autocorrelation function is shown to decay algebraically in time, like t�3=2, if momentum is conserved

locally, and like t�1, if momentum is not conserved by the driving. A simple scaling argument supports the

observed long-time tails.
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Strongly agitated granular fluids have attracted a lot of
attention in recent years [1]. Generalizing kinetic theory to
gases of inelastically colliding particles, most of the theo-
retical work which is based on microscopic dynamics has
been done for either rather dilute or weakly inelastic
systems. The velocity autocorrelation function [2] as well
as transport coefficients [3] have been calculated for the
homogeneous cooling state, which has also been simulated
for a wide range of inelasticities [4].

Comparatively few studies have been performed on the
stationary state of granular fluids in the moderate or high
density regime. This is surprising, given the fact that the
corresponding (elastic) molecular fluids have been studied
in great detail [5] and have revealed several interesting
features already in the dynamics of a single tagged particle:
backscattering as indicated by a negative velocity autocor-
relation, long-time tails due to the coupling of the tagged
particle’s density to a shear flow, and a glass transition at a
volume fraction � � 0:58 accompanied by a strong de-
crease of the diffusion constant as a precursor to structural
arrest. It is our aim to understand which of these features
pertain to an inelastic gas and how they are destroyed by
increasingly more dissipative collisions. This applies, in
particular, to the glass transition, which has been conjec-
tured to be related to the jamming transition in granular
matter [6].

Several experimental groups have measured the velocity
autocorrelation function (VACF) in dense granular flow [7–
12]. The VACF in the steady state of a three-dimensional
(3D) vibrofluidized bed [8] was shown to exhibit strong
backscattering effects. In 2D vibrated layers, high-speed
cameras have been used to measure the VACF. Even
though long-time tails seem to be beyond the experimental
resolution, these experiments give evidence for a nonex-
ponential decay [11]. Caging effects have clearly been seen
in air-fluidized beds [13] as well as in sheared granular
materials [14]. In recent experiments [12] the development
of a plateau in the mean square displacement has been

observed but may be related to crystallization as seen in
monodisperse vibrated layers [11,12].
Model.—We investigate a system of monodisperse hard

spheres of diameter a and mass m. The time evolution is
governed by instantaneous inelastic two-particle collisions.
Given the relative velocity g :¼ v1 � v2, the change of g in
the direction n :¼ ðr1 � r2Þ=jðr1 � r2Þj is

ðg � nÞ0 ¼ �"ðg � nÞ; (1)

where primed quantities indicate postcollisional velocities
and unprimed ones refer to precollisional ones. The coef-
ficient of normal restitution " characterizes the strength of
the dissipation. For real systems, " is a function of n and g
[15]. Here we consider a simplified model with " ¼
const 2 ½0; 1�. The elastic system is characterized by " ¼
1 and the sticky gas by " ¼ 0. The postcollisional veloc-
ities of the two colliding spheres are given by v01 ¼ v1 � �
and v02 ¼ v2 þ � with � ¼ 1þ"

2 ðn � gÞn.
Because of the inelastic nature of the collisions, we have

to feed energy into the system in order to maintain a
stationary state. This can be done either by driving through
the boundaries, for example, shearing the system or vibrat-
ing its walls [16], or alternatively by bulk driving, as in air-
fluidized beds [13] or as in the experiments of Ref. [17].
Here we choose the simplest bulk driving [18] and kick a
given particle, say, particle i, instantaneously at time t
according to

v 0
iðtÞ ¼ viðtÞ þ vDr�iðtÞ: (2)

The driving amplitude vDr is constant, and the direc-

tion �iðtÞ is chosen randomly with h�ð�Þ
i ðtÞ�ð�Þ

j ðt0Þi ¼
�ij����ðt� t0Þ, with the Cartesian components �ð�Þ

i , � ¼
x, y, z distributed according to a Gaussian with zero mean.
In practice we implement the stochastic process by kicking
the particles randomly with frequency fDr.
If a single particle is kicked at a particular instant,

momentum is not conserved. Because of the random di-
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rection of the kicks, the time average will restore the
conservation of global momentum, but only on average.
Momentum conservation is known to be essential for the
appearance of long-time tails in elastic fluids. In fact the
coupling of the tagged particle’s density to the diffusion of
transverse shear is responsible for the long-time tail of the
VACF in elastic fluids. Hence we also study a second
driving mechanism, in which pairs of particles are kicked
in opposite directions [19]. However, even this kind of
driving conserves momentum only globally. To ensure
momentum conservation even on small scales, we choose
pairs of neighboring particles and kick these in opposite
directions. Our system is very close to an elastic fluid, in
the sense that we provide the thermal energy ‘‘by hand.’’
We regard this as a useful first step to investigate which
features of an elastic molecular fluid pertain to a driven
inelastic granular fluid.

We are interested in the time delayed correlation of a

tagged particle’s velocity �viðtÞ ¼ viðtÞ � vðtÞ relative to

the average vðtÞ ¼ 1=N
P

iviðtÞ
�ðtÞ ¼ h�viðtÞ � �við0Þi=h�v2i ð0Þi (3)

and its mean square displacement (MSD)

�r2ðtÞ ¼ h½riðtÞ � rið0Þ�2i: (4)

Here h. . .i denotes an average over the random noise �iðtÞ.
Of particular interest is the diffusion coefficient, which is
expected to decrease as we increase the volume fraction
towards close packing. It can be obtained in two alternative
ways, either via the integral of the VACF 3D ¼ R1

0 dt�ðtÞ
or as the time derivative of the MSD 6D ¼ limt!1

d�r2ðtÞ
dt .

Both definitions are equivalent in a stationary state.
Method.—In order to determine the MSD, the VACF,

and the diffusion coefficient, we performed event driven
molecular dynamics simulations for several system pa-
rameters: 0:5 � " � 0:9 and volume fractions 0:1 � � �
0:537 25. To detect long-time tails it is very important to
have good statistics, since the tails occur at times when the
correlations are already quite small. Hence we use a rela-
tively small number of particles,N ’ 104, but average each
configuration over 1000 independent runs. Like Bizon
et al. [20] we choose the driving frequency, fDr, of the
order of the collision frequency. The balance of energy

input and dissipation requires v2
Dr � 1�"2

4 T=m. We choose

vDr to achieve the same T for different ". It is convenient to
use dimensionless units such that a ¼ 2, m ¼ 1, and T ¼
1. Crystallization of the system has never been observed in
the simulation, unless we prepare the system in a crystal-
line state initially, which was found to be stable in time
only for " ¼ 0:9 and the highest density (� ¼ 0:537 25)
investigated.

Event driven simulations of dense systems with a con-
stant coefficient of restitution are known to undergo an
inelastic collapse. Several mechanisms have been sug-
gested to avoid the inelastic collapse. Here we proceed as

follows: We introduce a virtual hull of very small width for
each sphere. Two approaching spheres then collide 3
times—when the virtual hulls first touch each other, there
is no change in momentum; then the real spheres collide
elastically when they touch; finally the inelastic change of
momentum takes place when the virtual hulls touch upon
receding. Thus the dissipation takes place only when the
colliding particles are sufficiently separated, i.e., by the
width of the hull, which is taken to be 10�5 of the particles’
diameter.
Results.—Backscattering effects are expected to be

strongest for high densities, when cages have formed lo-
cally, enforcing reflection of the tagged particle by neigh-
boring particles of the cage. In Fig. 1 we show the modulus
of the VACF for volume fraction � ¼ 0:5 and different
inelasticities 0:7 � " � 0:9. The VACF becomes negative
after a few collisions for all 3 of values of ". It stays
negative for about 10 collisions before the correlations
become positive again for large times. For increasingly
more inelastic collisions the range of negative correlations
decreases and disappears completely for strongly inelastic
systems, as demonstrated in Fig. 2 for � ¼ 0:45. One
clearly observes oscillations for " ¼ 0:9, whereas for " ¼
0:8 the VACF stays positive, but shows a pronounced dint.
For still smaller ", backscattering disappears completely
due to two effects. First, in the sticky limit a tagged particle
is no longer reflected from its cage. Second, in order to
achieve a stationary state of the same temperature, the
driving force has to be increased for increasing inelasticity.
Thereby the system is more strongly randomized, and the
cages are destroyed more frequently.
Long-time tails are most easily observed for intermedi-

ate densities (� ¼ 0:2, 0.35) and/or rather inelastic systems
such that backscattering effects do not interfere signifi-
cantly. In Fig. 3 we plot the modulus of the VACF for
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FIG. 1 (color online). Modulus of the VACF for � ¼ 0:50 and
different values for " as a function of the mean number of
collisions per particle, denoted by s. Symbols indicate negative
values of the VACF.
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driving which conserves momentum locally. For a volume
fraction of � ¼ 0:35, an algebraic tail is clearly visible,
and the exponent is approximately�3=2 as in the molecu-
lar fluid. For volume fraction � ¼ 0:2, the algebraic decay
is shifted to larger times. To observe long-time tails for
higher volume fractions, one has to increase the inelastic-

ity. In Fig. 2 a long-time tail / s�3=2 is clearly visible only
for the most inelastic system with " ¼ 0:5. In the inset of
Fig. 3 we plot the VACF for a driving mechanism with
random kicks of single particles, such that momentum is
not conserved. One clearly observes an algebraic decay;
however, the exponent is approximately �1 and clearly
distinct from �3=2.

A simple scaling argument [5] yields the long-time tail
of an elastic fluid and is easily generalized to the driven

granular system with either momentum conservation or
not. Let us assume that at t ¼ 0 the tagged particle has
velocity vi;x in the x direction. After a short time t the
velocity is shared among the Nt ¼ �Vt particles in a small
volume Vt around the tagged particle: vi;xðtÞ � vi;xð0Þ=Nt.

If the driving conserves momentum locally, then the only
process is diffusion of transverse momentum, which gives
rise to a diffusive growth of the radius of Vt. This implies

Vt � t3=2 and consequently vi;xðtÞ � t�3=2. If on the other

hand, momentum is not conserved by the driving, we have
two competing processes. Collisions among the particles
still conserve momentum and give rise to the same spread

as above: Nt � t3=2. At the same time, momentum builds

up due to the random driving such that Pt � t1=2.
Considering both, the diffusive transport due to collisions
and the build up of momentum due to driving, we find
vi;xðtÞ ¼ Pt=Nt � t�1.

The VACF has been studied previously for a freely
cooling gas [21,22], which is not in a stationary state, so
the VACF in general depends on two time arguments, the
waiting time tW and the delay t. For 2-dimensional systems
a long-time tail of the form t�1 was observed [21]. Sheared
granular gases were found to exhibit long-time tails in the

VACF with an algebraic decay / t�3d=2 [23] in spatial
dimension d ¼ 2 and d ¼ 3.
In the inset of Fig. 4 we show a double logarithmic plot

of the mean squared displacements for a system of inelas-
ticity " ¼ 0:7 and volume fractions � ¼ 0:1, 0.5, and
0.537 25. The ballistic regime can be clearly seen for up
to one or two collision times. For larger times there is a

FIG. 3 (color online). The VACF for a system of inelasticity
" ¼ 0:7 and volume fractions � ¼ 0:2, 0.35 (from bottom to top)
with local momentum conservation. Inset: without conservation
of momentum.

FIG. 4 (color online). Diffusion coefficients relative to the
Enskog values as a function of �; reference values for the elastic
system from [26]. Inset: MSD for " ¼ 0:7 and � ¼ 0:1 (red solid
line), 0:5 (green solid line), and 0:537 25 (blue solid line), from
top to bottom, as a function of s; the dashed and the dash-dotted
lines indicate ballistic (s2) and diffusive (s) behaviors, respec-
tively.
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FIG. 2 (color online). Modulus of the VACF for � ¼ 0:45 and
0:5 � " � 0:9 (from top to bottom). Symbols in the curve for
" ¼ 0:9 indicate negative values of the VACF.
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crossover to the linear regime. Even for the dense systems
no plateau is visible, although a hint of a developing
plateau may be observed for the highest density of � ¼
0:537 25. For the longest times the MSD grows linearly
with time, allowing us to extract the diffusion coefficient
which decreases roughly by a factor of 20, when the
volume fraction is increased from � ¼ 0:1 to � ¼
0:537 25.

The simplest kinetic theory for granular gases is the
Enskog approximation, which has been employed exten-
sively for free cooling dynamics [3]. It can be easily
extended to driven systems [24], yielding an exponential
decay of the VACF in the stationary state. This approxi-
mation implies for the diffusion coefficient

DE ¼ 1ffiffiffiffi
�

p 3

8

1

na2gðaÞ
1

1þ"
2

ffiffiffiffi
T

m

s
(5)

Here n denotes the number density, and gðaÞ the pair
correlation function at contact, which is usually approxi-
mated by the Carnahan-Starling formula [25]. We expect to
observe deviations from the Enskog theory. To quantify
these, we plot in Fig. 4 the diffusion coefficient DSim=DE

relative to the Enskog value as a function of volume
fraction together with reference values for an elastic sys-
tem [26].

As in the elastic case, the dependence ofDSim=DE on the
volume fraction is not monotonic, but the maximum is
shifted to higher volume fractions as compared to the
elastic case. The increase over the Enskog value for inter-
mediate densities is stronger, while the decrease over the
Enskog value at high densities is smaller as compared to
the elastic case. Nevertheless we see a pronounced de-
crease of the diffusion constant as the density of the glass
transition in the elastic system is approached.

Conclusion.—We have investigated the dynamics of a
tagged particle in a granular fluid, driven to a stationary
state. Increasing the density we observe a strong decrease
of the diffusion constant as the glass transition in the elastic
system is approached. Cage effects are clearly visible at
these high densities in the VACF, which was shown to
oscillate as a function of time. As expected, backscattering
becomes weaker as the fluid is made more inelastic. We
have shown that long-time tails not only exist in the
inelastic fluid but depend on whether or not the driving
mechanism conserves momentum locally. If momentum is
conserved locally, then momentum transport is diffusive,
and the decay of the VACF is identical to the molecular

fluid, like t�3=2. If on the other hand momentum can build
up locally, then the decay of the VACF is slowed down as

compared to the conserved case, giving rise to a t�1 decay
of the VACF.
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