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Spin accumulation is a crucial but imprecise concept in spintronics. In metal-based spintronics it is

characterized in terms of semiclassical distribution functions. In semiconductors with a strong spin-orbit

coupling the spin accumulation is interpreted as a superposition of coherent eigenstates. Both views can be

reconciled by taking into account the electron-electron interaction: a sufficiently strong self-consistent

exchange field reduces a spin accumulation to a chemical potential difference between the two spin bands

even in the presence of spin-orbit coupling. We demonstrate the idea on a clean two-dimensional electron

gas by showing how the exchange field protects a spin accumulation from dephasing and introduces an

easy-plane anisotropy.
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Metal-based spintronics [1] has evolved into a mature
field in which spin phenomena are routinely exploited in
versatile applications [2]. However, integration of spin-
based functionalities into semiconductor circuits is still a
pressing challenge. Much of the recent research in this area
has been motivated by device concepts, such as the seminal
Datta-Das transistor [3], which requires injection and de-
tection of spins by ferromagnetic contacts to a narrow
channel of a two-dimensional electron gas (2DEG) with
gate-controlled spin-orbit interaction (SOI). In spite of
progress to inject, modulate, transport, and detect spin
polarization all-electrically [4–9], as well as evidence
that the SOI can indeed be tuned by external gates [10],
the route to a working spin transistor appears to be still full
of obstacles. In the meantime, many insights have been
obtained on the spin accumulation and its dynamics by
optical methods, especially time-dependent Kerr and
Faraday rotation spectroscopy [11–16]. Large Rashba
splitting has been observed at metal surfaces by angle-
resolved photoemission [17], which has attracted a lot of
attention recently [18,19].

We define a spin accumulation as a nonequilibrium spin-
polarized state injected optically or electrically into a non-
magnetic material. In metal-based spintronics a spin accu-
mulation is synonymous with a chemical potential
difference between spin-up and spin-down bands [20].
However, in semiconductors the SOI prominently affects
the electronic structure and transport properties [21]. A
spin accumulation is then interpreted as an intrinsically
time-dependent quantum superposition of coherent eigen-
states. This difference is not just a semantic question, but it
is essential for the functionality of spintronic devices. Here
we offer a unified mean-field theory for the spin accumu-
lation in both metals and semiconductors. Spin can be
injected either slowly, e.g., by a ferromagnetic contact
with small electric bias, or rapidly, e.g., by pulsed optically
induced excitation. We start below with a description of
spin-accumulation eigenstates that are accessible by adia-

batic excitation followed by a brief discussion of the spin-
accumulation dynamics of rapidly excited states. We illus-
trate the general ideas at the hand of a 2DEGs with Rashba
SOI [22], in which the disorder-scattering lifetime broad-
ening is much smaller than the spin-orbit splitting at the
Fermi level.
Let us consider an infinitely extended homogeneous

2DEG. To leading order in the electron wave vector k ¼
�ir the Hamiltonian including the SOI is [21] H0 ¼
@
2k2=2m� þ �ð�xky � �ykxÞ, where m� ¼ mrme is the

effective electron mass, me is the bare electron mass, �i

are the Pauli matrices, and � is the Rashba SOI strength
parameter [22]. Electron-electron interactions are treated
within the density-matrix functional theory (DMFT) [23]
which is a generalization of the Hohenberg-Kohn-Sham
density-functional theory [24] that can handle excited
states. Compared to the Hartree-Fock (HF) method, ex-
change and correlation effects in the DFMT can be treated
within local approximations. The reduced density matrix is

�ðz; z0Þ ¼ P1
i ni�iðzÞ�y

i ðz0Þ, where �i are eigenstates of
the Kohn-Sham Hamiltonian (natural orbitals), 0< ni < 1
are the corresponding eigenvalues (natural occupation
numbers), and z ¼ ðr; �Þ is space-spin coordinate. We de-
fine �s as the subset of all density matrices which corre-

spond to a given electron density �ðrÞ ¼ P
i�ni�

y
i ðzÞ�iðzÞ

and spin polarization sðrÞ ¼ P
ini�

y
i ðzÞ��iðzÞ=N, where

N is the total number of electrons. The density-matrix
functional is defined via minimization of the total energy
E½�s� ¼ min�½�s�h�½�s�jHj�½�s�i in the space of all

many-body wave functions that correspond to a given �s.
We now assume that the exact density matrix can be

generated by a noninteracting system of pseudoparticles

½H0 þ Vext þ VH þ Vxc��i ¼ �i�i; (1)

where Vext, VH, and Vxc are the external, the Hartree, and
the exchange-correlation potential, respectively, such that

�sðz; z0Þ ffi PN
i fi�iðzÞ�y

i ðz0Þ with fi ¼ f0; 1g and
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Vxcðz; z0; ½�s�Þ ¼ �Exc½�s�=��sðz; z0Þ, where Exc is the
exchange-correlation energy. HF calculations for the
Rashba Hamiltonian, following Ref. [25], confirm that
the effect of the SOI on the exchange potential is negligible
for small spin polarizations. With the local approximation,
we finally arrive at Vxcðz; z0; ½�s�Þ � �ðr� r0Þ½V0ð�; sÞ þ
Jxcð�; sÞŝ � ��, where s ¼ sŝ, and Jxcð�; sÞ [ ’ Jð�Þs for
small s] is the modulus of the exchange-correlation field
vector. The scalar V0 can be dropped in homogeneous
systems. We may approximate J by the HF exchange

energy of the strictly 2DEG [26] Vxc � Jxð�; sÞŝ � � �
Jð�Þs � � ¼ � ffiffiffi

2
p

mr=ð�rs�2ÞRs � �, where rs ¼ mr=
ðaB� ffiffiffiffiffiffiffi

��
p Þ is the dimensionless density parameter, � is

the relative dielectric constant of the medium, R ¼
13:6 eV, and aB ¼ 0:53 �A. The effective Hamiltonian is
then

HðsÞ ¼ H0 þ Js � �; (2)

where J < 0 is the effective exchange potential, in which
correlations can be included using published parametriza-
tions of the correlation energy for a non-SO coupled 2DEG
[27]. For typical electron densities � the exchange energies
(a few meV) are of the same order of magnitude as SOI
energies at the Fermi level in III–V [10] and II–VI [28]
semiconductor-based 2DEGs.

The eigenstates of the Hamiltonian in the nonpolarized
ground state are split into two bands with a chiral spin
pattern [Figs. 1(a) and 1(b)]. The exchange field deforms
the electronic bands and spinors as shown in Fig. 1(c) for
in-plane and in Figs. 2(a) and 2(b) for perpendicular direc-

tion of an injected spin accumulation. SO split bands of the
surface states of in-plane magnetized Gd films have been
found to be deformed by the exchange potential [18]
similar to Fig. 1(c). Our task is to find the self-consistent
single-determinant eigenfunction ofHðsÞ, which according
to the DMFT is unique.
Introducing the occupation numbers fk	 ¼ f0; 1g of the

spin-split states �k	, the spin polarization reads

s ¼ X
k	

fk	h�k	j�j�k	i=N; (3)

where 	 ¼ fþ;�g is the band index. The state we are
looking for minimizes the energy under the constraint (3)
, with the fk	 as constrained variational variables. We
solve the problem either analytically in limiting cases or
numerically by a stochastic minimization method, which
uses penalty functions to fix the spin polarization and the
Metropolis sampling method to find the global energy
minimum. An unequal occupation of spin bands, N� ¼P

k�fk� >Nþ, can be parametrized by a chemical poten-
tial difference or a band polarization pb ¼ ðN� �
NþÞ=N > 0. Occupations can also shift in momentum
space [Fig. 1(d)].
A spin accumulation in the plane of the 2DEG can be

generated at minimized energy by shifting the Fermi
circles, which induces currents [29] via a ‘‘spin-galvanic
Hall effect’’: the minimum energy state at fixed sx is
associated with a charge current in the perpendicular y
direction,

jc;y ¼ �e
�

@

�
1þ Jm�

��@2

�
sx: (4)

FIG. 1 (color online). Left: Spins (a) and energies (b) of the
ground-state spin-split bands in a noninteracting Rashba 2DEG.
The inner and outer circles correspond to the Fermi energies of
the spin-split bands. Right: Modulation of the electronic struc-
ture in the presence of an in-plane spin accumulation s by its
exchange field. Circles in (c) are fixed-energy contours. The
shifted occupation number distributions that minimize the en-
ergy are shown in (d).

FIG. 2 (color online). (a),(b) Spin direction of the lower spin-
split (� ) band in the presence of a spin polarization normal to
the 2DEG plane. The total spin polarization is determined by the
shaded area between kF;� and kF;þ. (c) The ground state (solid

line) and excited eigenstates (dashed line) with nonzero, small
spin polarization perpendicular to the 2DEG surface are sepa-
rated with an energy gap. (d) Band polarization of spin-
accumulation states at fixed J ¼ �2 meV. Material parameters
are � ¼ 12:7, m� ¼ 0:067me, � ¼ 2� 1015=m2.
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Since electrons move with constant drift velocity, there are
no intrinsic spin-Hall currents [30]. Nonequilibrium spin
currents are induced, but vanish to first order in sx.

A spin accumulation perpendicular to the 2DEG surface
can be generated by the exchange field that pops the in-
plane spin textures out of the plane [Fig. 2(b)]. However,
the SOI counteracts the spin alignment and the band po-
larization pb must be increased from that of the ground
state to support a spin accumulation [31]. Consequently,
excited eigenstates corresponding to a finite sz are, in
contrast to the in-plane case, separated from the nonpolar-
ized ground state by a finite energy gap

Eg ¼
�
�m�

@J

�
2
�
J þ @

2��

m�

�
þOð�4Þ: (5)

The divergence in Eg at J ! 0 reflects the absence of an sz
component in the noninteracting Rashba model. The gap is
shown in Fig. 2(c) in which Eq. (5) corresponds to the low
� limit of the energy difference. This gap energy must be
overcome to achieve spin-polarized eigenstates at arbi-
trarily small sz � 0. Except for this singular behavior at
sz ¼ 0we find that the energy of eigenstates is isotropic (to
second order in s) to the numerical accuracy for sz � 0. We
suspect that there may be a more general physical reason
behind this out-of-plane isotropy. The contribution of spin-
galvanic currents to EðsÞ is not significant for material
parameters shown in Fig. 2.

The maximum spin accumulation that can be accommo-
dated perpendicular to the 2DEG surface is determined by
the total spin polarization of a single occupied band (pb ¼
1). In the exchange-only approximation the self-
consistency criterion (3) can be fulfilled only when

�< 2jJj=kF ¼ 2jJj= ffiffiffiffiffiffiffiffiffiffi
4��

p ¼ 0:32 eV nm=�: (6)

Figure 2(d) shows the stability limit as a function of sz.
Per definition, eigenstates do not dephase. The dynam-

ics of the semiclassical spin accumulations discussed
above is therefore governed by the Bloch equation _s ¼
�
s�Beff � s=T1 [1], in which Beff ¼ �@EðsÞ=@s and
T1 is the spin relaxation time. Because of the singular
anisotropy of EðsÞ the Bloch equation is mathematically
not well defined in the mean-field theory employed here.
Qualitatively, the absence of an angle dependence of EðsÞ
(for sz � 0) implies that exchange-stabilized spin accumu-
lations do not feel an internal SOI field and precess only
when an external magnetic field is applied. A spin accu-
mulation exactly in the 2DEG plane is trapped and pre-
cesses around an in-plane external magnetic field that
exceeds a threshold value governed by the energy gap (5).

A large phase space available for scattering processes
makes a large spin accumulation susceptible to fast decay.
Therefore the stability limit of eigenstates (6) is not a sharp
phase boundary. For not too highly excited systems, the
Dyakonov-Perel [32] mechanism by random scattering at
defects is believed to be the dominant source of finite T1

spin lifetimes in clean systems. Since in an exchange-
stabilized 2DEG the precession in the SO field is sup-
pressed, the efficiency of the Dyakonov-Perel mechanism
is strongly diminished for systems in the clean limit con-
sidered here. The opposite (dirty) regime can be handled
by spin-coherent kinetic [33,34] and diffusion [35–37]
equations or numerical simulations [14,38].
The Datta-Das transistor is a spin valve consisting of a

2DEG spacer with transparent ferromagnetic contacts [3].
Even when the magnetizations of the two electrodes are
parallel to each other, transport depends on the magneti-
zation direction when exchange is taken into account.
When magnetizations are oriented in the current direction,
the spin accumulation can be injected into the 2DEG as an
eigenstate with shifted distributions [Fig. 1(c)], which does
not precess and, hence, does not react to a gate voltage that
modulates the SOI. For magnetizations not in the 2DEG
plane spin-accumulation eigenstates are separated from the
ground state by an energy gap and spin cannot be injected
adiabatically at low energies. A nonadiabatic spin injec-
tion, on the other hand, could lead to a coherent superpo-
sition of eigenstates and spins would precess in the SOI
field, as envisioned by Datta and Das.
In optical pump and probe experiments, spin-polarized

electrons and holes are generated by short resonant pulses
of circularly polarized light, followed by fast thermaliza-
tion and spin relaxation of the holes. A fast excitation
creates a coherent superposition of individual spin eigen-
states which dephases with time. We calculate the dynam-
ics of the spin accumulation from the initial state c 0 for

times t > 0 from jc ðtÞi ¼ R
dteiHðtÞt=@jc 0i, where the

Hamiltonian depends on t by the exchange field JsðtÞ.
The state at t is solved iteratively

jc ðtÞi � eiHðt��tÞ�t=@ . . . eiHðt¼�tÞ�t=@eiHðt¼0Þ�t=@jc 0i (7)
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FIG. 3 (color online). Oscillation and dephasing of a spin
ensemble in a SO field. The state is a coherent superposition
of spin eigenstates, sðt ¼ 0Þ ¼ 10%, and � ¼ 4� 10�11 eVm.
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for short time steps�t ’ 1 fs. We assume that dephasing is
fast compared to the spin relaxation processes so that the
occupation numbers are unchanged. Figure 3 shows the
time evolution of the spin accumulation, which has been
excited at time t ¼ 0 into a coherent superposition of
eigenstates. A single spin oscillates in the SO field by a
frequency !SO ¼ 2�k=@. The spin polarization excited
over a finite band width is therefore expected to decay on
the scale of the dephasing time T2, that decreases with
increasing s. However, a strong exchange field aligns spins
along a common axis and synchronizes spin precession
which protects the spin polarization from dephasing. The
exchange-induced enhancement of T2 becomes significant
when the exchange splitting, which is proportional to s,
becomes of the same order of magnitude as the spin-orbit
splitting. Such an effect has been observed in experiments
[39], but can be explained by the exchange effect in the
dirty limit as well [33,34].

In the space of the parameters provided by material and
excitation conditions the spin accumulation features both
semiclassical and quantum properties. The exchange field
and thus the spin accumulation can be engineered by
electron density, excitation intensity, spin direction, and
electric currents, and should therefore be considered in
advanced spintronic device concepts [4,15]. Our theoreti-
cal framework is general and can be extended to treat
three-dimensional, inhomogeneous, and finite systems as
well as the Dresselhaus SOI [40]. The electronic structures
of other nonmagnetic conductors with significant SOI, e.g.,
hole gases in doped semiconductors or nonmagnetic tran-
sition metals, are more complicated, but still amenable to a
computational implementation of our method.
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