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Spin relaxation close to the glass temperature of CuMn and AuFe spin glasses is shown, by neutron spin

echo, to follow a generalized exponential function which explicitly introduces hierarchically constrained

dynamics and macroscopic interactions. The interaction parameter is directly related to the normalized

Tsallis nonextensive entropy parameter q and exhibits universal scaling with reduced temperature. At the

glass temperature q ¼ 5=3 corresponding, within Tsallis’ q statistics, to a mathematically defined critical

value for the onset of strong disorder and nonlinear dynamics.
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The dynamical correlations associated with the onset
of a glassy state have been the focus of considerable
interest and controversy over the last four decades, yet
despite this attention such dynamics are still poorly under-
stood. Above the glass temperature, Tg, the dynamics

are generally characterized by a stretched exponential
(Kohlrausch or Kohlrausch-Williams-Watts [1,2]) relaxa-
tion, � exp½�ðt=�Þ��. This form appears to be almost
ubiquitous in nature, describing phenomena as diverse as
human dynamics [3], the conductivity close to the metal-
insulator transition [4], the jamming transition [5], frus-
trated magnets [6], experimental [7] and theoretical [8]
spin glasses, as well as conventional glass forming liquids
above the glass temperature [9,10].

However, the stretched exponential form does not ade-
quately describe the relaxation of either structural or mag-
netic glasses close to Tg and below, where self-similarity in

time (i.e., fractal behavior in time) occurs. This is demon-
strated in Monte Carlo calculations by Ogielski [8], based
upon a 3D� J Ising spin-glass model, which show that
close to the spin-glass temperature the time dependent spin
autocorrelation function should take a phenomenological
modified Kohlrausch form which incorporates a power law
dependence:

qðtÞ ¼ hSið0ÞSiðtÞi / t�xe�ðt=�Þ� (1)

in which � increases from 1=3 at Tg to 1 at �4Tg, x

increases from 0 below Tg to 0.5 at high temperatures

and the relaxation time � diverges at Tg. This prediction

is also largely supported by neutron spin echo (NSE)
measurements [11].

The origins and implications of such nonexponential
relaxation remain the subject of some debate, not least
because it can be demonstrated that Kohlrausch-like re-
laxation may arise from either a statistical distribution of
independent (parallel) relaxation channels, or from more
complex hierarchically constrained dynamics [12]. For a

detailed physical insight it is necessary to explore global
models of glassy relaxation which attempt intrinsically to
embody both distributed dynamics and the interactions that
may lead to hierarchical relaxation.
Such a model was introduced by Weron [13] in an

attempt to explain the apparently universal power law for
dielectric relaxation. Weron’s rigorous probabilistic ap-
proach, based on the cluster model of Dissado and Hill
[14], considers a hierarchical progression of relaxation
which results in a continuously changing energy landscape.
The hierarchy is introduced through the formation of finite
clusters which arise from interactions between relaxing
dipoles, with each cluster being represented by an effective
dipole related to its internal structure. The time taken for
polarization fluctuations to reach equilibrium is a random
variable that for each relaxing dipole depends upon two
other random variables, namely, the waiting time and the
dissipation rate. Through these variables Weron accounts
for the effects of both intercluster and intracluster inter-
actions with the characteristic time scale of any relaxing
entity being restricted by the structural reorganization of
the surrounding clusters and derives a generalized relaxa-
tion function

’ðtÞ ¼ ½1þ kðt=�Þ���1=k; (2)

where � is associated with the fractal geometry of the
system and kð>0Þ is an effective interaction parameter
related to the waiting time and providing a measure of
the relative contribution of hierarchical relaxation pro-
cesses. Conveniently, the Weron power law reduces to
the Kohlrausch form in the limit k ! 0, in which case 0<
� � 1 has precisely the same meaning as before, with the
limit � ! 1 implying simple Debye (exponential)
relaxation.
Phenomenologically, the Weron model can be readily

extended to the spin-glass transition problem yet, despite
its rigor and elegance, this approach has not previously
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been used in the analysis of spin relaxation. We have
therefore investigated the applicability of this generalized
relaxation function to spin glasses by analyzing neutron
spin echo spectra collected from the archetypal metallic
systems Cu1�xMnx (x ¼ 0:1, 0.16, 0.35) and by revisiting
our previously measured NSE spectra from Au1�xFex (x ¼
0:14) [11]. We have also explored the interconnections
between the probabilistic Weron model and a more general
approach based on nonextensive thermodynamics intro-
duced by Tsallis [15] to describe highly disordered systems
governed by Lévy-stable distributions.

Cu1�xMnx samples with x ¼ 0:1, 0.16, and 0.35 were
prepared by argon arc melting and subsequent cold rolling.
The resulting disks were homogenized at 900 �C before
being quenched directly into water. The samples were
found to have glass temperatures Tg of 45, 74, and

153 K, respectively. The Cu1�xMnx NSE spectra were
collected using the IN11C spectrometer [16] at the
Institut Laue Langevin (Grenoble) at Q ¼ 4 nm�1 with
an incoming wavelength of 0.55 nm. Our previously re-
ported spectra from Au0:86Fe0:14 (Tg ¼ 41 K) were ob-

tained on IN15 at Q ¼ 0:4 nm�1 and a wavelength of
0.8 nm [11].

All NSE spectra were independent of scattering vector
Q: Characteristic results are shown in Figs. 1 and 2. In
Fig. 3 we show a direct comparison of least squares fits of
the Kohlrausch stretched exponential, Ogielski [Eq. (1)]
and Weron [(Eq. (2)] functions to the relaxation of
Au0:86Fe0:14 at 45.7 K. While both of the latter functions
afford equally acceptable descriptions over the Fourier
time range covered by the data, the Ogielski function
must be modified to avoid an unphysical increase to values
greater than unity at short times [17]. In comparison, the
Weron function is able to describe all spectra, from the
high temperature simple exponential limit to the complex
power law decay found below Tg, with consistent and

physically meaningful parameters.
The spectra ofAu0:86Fe0:14 give a temperature dependent

�, decreasing from 1 at high temperatures to approxi-
mately 0.3 at the glass temperature, which implies a con-
tinuing evolution of the geometric and dynamical fractal
character of the spin clusters. The CuMn spectra cover a
smaller dynamic range, and equally valid fits can be ob-
tained with a temperature independent �� 0:5 or with �
varying with temperature as found for AuFe. However, the
most informative parameter is the interaction parameter k,
which diverges as the spin-glass temperature is ap-
proached. We suggest that k provides an interesting and
novel insight into the underlying thermodynamics which
drive the nonexponential spin-glass relaxation, and closely
links such relaxation to that observed in other disordered
systems.

A physical interpretation of the Weron function is pro-
vided by Tsallis’ generalization of Boltzman-Gibbs ther-
mostatistics for complex and multifractal systems [15]. In
this context Tsallis introduces the concept of nonextensive

entropy, proposing that the total entropy of any self-
organizing, strongly interacting systems may be either
greater or less than the sum of the entropies of the indi-
vidual components of the system.
According to the Tsallis model, summing the entropy of

two independent systems, A and B, gives

FIG. 1. Temperature dependence of the NSE spectra of
(a) Cu0:9Mn0:10 (b) Cu0:84Mn0:16, and (c) Cu0:65Mn0:35 at Q ¼
4 nm�1. In each case the solid lines represent fits of the Weron
function, Eq. (2), to the data.

PRL 102, 097202 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 MARCH 2009

097202-2



SqðAþ BÞ
kB

¼ SqðAÞ
kB

þ SqðBÞ
kB

þ ð1� qÞ SqðAÞ
kB

SqðBÞ
kB

;

(3)

where q is the so-called nonextensivity parameter. For q >
1 the entropy is subextensive while for q < 1 it is super-
extensive. Standard Boltzmann-Gibbs entropy (S ¼
kB
P

ipi lnpi) is recovered as q ! 1. In general, the
Tsallis total entropy may therefore be written as

Sq ¼ kB
1�P

i p
q
i

q� 1
: (4)

Brouers and Sotolongo-Costa [18] demonstrated a direct
relation between Tsallis’ nonextensive entropy and
Weron’s probabilistic relaxation model, taking as their
starting point the conventional weighted distribution of
exponential relaxation processes

’ðtÞ ¼
Z 1

0
fð�Þe�t=�d�: (5)

Here the relaxation time � scales with the characteristic

volume v of the relaxing clusters according to � ¼ v1=�

and 0<� � 1 is related to the fractal geometry of the
system, as in the Weron analysis. By maximizing the
Tsallis nonextensive entropy they obtain a (normalized)
cluster size distribution function

fðvÞ ¼
�

1� v
1� q

2� q

�ð1=1�qÞ
; (6)

where 1 � q < 2. This distribution function belongs to the
family of Lévy-stable distributions characterized by
asymptotic power law tails [19,20] and the nonextensivity
parameter q quantifies the statistics of the system. An
analysis of Eq. (6) shows that the moments are defined
only for 1< q< 3=2, whereas for q � 3=2 all moments,
including the mean cluster size, diverge. However, within
the modified q statistics introduced by Tsallis finite mo-
ments are obtained only for q < 5=3 [21]. The critical
value q ¼ 5=3 marks the transition to the limit of strong
disorder, where most statistical weight is in the wings of
the distribution and the macroscopic behavior is governed
by a high number of highly improbable collective events.
The relaxation function deduced from the cluster size

distribution function takes a form identical to that proposed
by Weron, subject to the simple substitutions k ¼
ðq� 1Þ=ð2� qÞ

’ðtÞ ¼
�

1þ
�
q� 1

2� q

��
t

�

�
�
��ð2�q=q�1Þ

: (7)

The values of the interaction parameter k obtained from
fits of the Weron function of Eq. (2) to theAuFe and CuMn
NSE spectra can thus be related directly to the subexten-
sivity parameter q.
As shown in Fig. 4, the resulting q values for the all the

spin-glass alloys discussed here, together with those ob-
tained from a reanalysis of the earlier published NSE
measurements [22] on the more dilute Cu0:95Mn0:05, ex-
hibit the same scaling with reduced temperature (T=Tg). At

first sight this is surprising as the fractal character of dilute
and concentrated CuMn spin glasses and of AuFe is ex-
pected to be quite different: Although an oscillatory RKKY
magnetic exchange dominates the interactions in both
systems, in AuFe the Fe atoms are known to cluster, while
in CuMn the Mn atoms anticluster. Correspondingly fer-
romagnetic percolation is found at 15 at:% Fe inAuFe, but
incipient antiferromagnetism is not evident in CuMn until
70 at:% Mn [23]. It is a remarkable property of phase
transitions that critical phenomena do not depend on mi-
croscopic details but on the topology (i.e., interactions and
dimensionality) of the systems.
At high temperatures q is close to 1, indicating an

essentially independent, parallel, relaxation of cluster mo-
ments. q increases continuously with decreasing tempera-

FIG. 3. The NSE spectra of Au0:86Fe0:14 at 45.7 K with asso-
ciated least squares fits of the Kohlrausch, Ogielski, and Weron
relaxation functions described in the text.

FIG. 2. Temperature dependence of the NSE spectra of
Au0:86Fe0:14 at Q ¼ 0:4 nm�1. The solid lines are the associated
fits of the Weron function, Eq. (2).
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ture and the first limit at q ¼ 3=2 is reached at�1:2Tg. The

most remarkable result, clearly demonstrated by Fig. 4, is
that the spin-glass transition temperature corresponds to
the limit q� 5=3. If Tg marks the transition to self-

similarity, as suggested by MC simulations [8] and experi-
mental findings [11], then the relaxation at Tg should

asymptotically follow the power law ðt=�Þ�y with y ¼
�ð2� qÞ=ðq� 1Þ. Using �� 0:3 and q ¼ 5=3 we obtain
an exponent y ¼ 0:15, which is very close to y� 0:13, the
value found previously for AuFe and CuMn 5% [11].

The correspondence between Tg and a mathematically

defined critical value for the extensivity parameter q,
which defines a transition to complex nonlinear dynamics,
is new and has profound repercussions. It appears that spin-
glass systems evolve from a state characterized by conven-
tional, extensive Boltzmann-Gibbs statistics at high tem-
peratures to one of extreme subextensivity at Tg. As q

increases long-range correlations become more and more
important and above q ¼ 3=2 the classical description
breaks down, necessitating the introduction of the Tsallis
q statistics. The strong disorder limit is reached at q ¼
5=3, where the complex dynamics are governed by the
power law tails of the Lévy-stable cluster size distribution
function [Eq. (6)]. Large-amplitude aperiodic fluctuations
and nonlinearity dominate this limit, which can be identi-
fied with the (spin) glass transition and with the point,
where self-similar relaxation sets in. Significantly, this

evolution appears to be universal, at least for the funda-
mentally different AuFe and CuMn spin glasses discussed
here suggesting that spin glasses are very similar to many
other complex disordered systems such as financial mar-
kets, earthquakes, turbulence, or jamming which are gov-
erned by self-similarity and the underlining Lévy-stable
distributions.
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FIG. 4. The Tsallis subextensivity parameter q obtained from
the fits of Eq. (2) to NSE spectra of the AuFe and CuMn samples,
as function of reduced temperature. The values of q for the
Cu0:95Mn0:05 sample have been obtained by fitting the previously
published data of Ref. [22].
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