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We analytically identify sufficient conditions for manifesting thermal rectification in two-terminal

junctions, including a subsystem connected to two reservoirs, within the quantum master equation

formalism. We recognize two classes of rectifiers. In type A rectifiers, the reservoirs’ energy structure

is dissimilar. In type B rectifiers, the baths are identical but include particles whose statistics differ from

that of the subsystem, to which they asymmetrically couple. Our study applies to various hybrid junctions

including metals, dielectrics, and spins.
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Understanding heat transfer in hybrid structures is of
fundamental and practical importance for controlling
transport at the nanoscale and for realizing functional
devices [1]. Among the systems that fall into this category
are metal-molecule-metal junctions, the basic component
of molecular electronic devices [2], and dielectric-
molecule-dielectric systems, where vibrational energy
flow activates reactivity and controls dynamics [3].
Single-mode radiative heat conduction between Ohmic
metals was recently detected, showing that photonic ther-
mal conductance is quantized [4]. Other hybrid systems
with interesting thermal properties are electronic spin-
nuclear spin interfaces [5], metal-molecule contacts with
exciton-to-phonon energy transfer [6], and metal-
superconductor junctions [7].

Thermal rectification, namely, an asymmetry of the heat
current for forward and reversed temperature gradients, has
recently attracted considerable theoretical [8–14] and ex-
perimental [15,16] attention. Most theoretical studies, con-
fined to a specific realization, have observed this
phenomenon in phononic systems using classical molecu-
lar dynamics simulations. It is still not clear what condi-
tions the system should fulfill for showing the effect model
independently and, in particular, what the roles are of the
nonlinearity, asymmetry, and inhomogeneity of the struc-
ture [14]. In this Letter, we attempt a first step towards a
general understanding of thermal rectification. We focus on
a prototype quantum model, including a central quantized
unit (subsystem) and two bulk objects (referred to as
terminals/reservoirs/baths), and establish sufficient condi-
tions for rectification. We identify two classes of rectifiers:
(i) ‘‘type A,’’ where the reservoirs are dissimilar, i.e., of
different mean energy, and (ii) ‘‘type B,’’ where the baths
are identical, but their statistics differ from that of the
subsystem, combined with unequal coupling strengths at
the two ends, as explained below. These rectifiers could be
realized in several subsystems (vibrational or radiation
modes) and reservoirs (spin, metal, dielectrics); see Fig. 1.

Consider a one-dimensional hybrid structure where a
central unit HS interacts with two reservoirs H0

� (� ¼
L; R) of temperatures T� ¼ ��1

� via the coupling terms V�:

H ¼ H0
L þH0

R þHS þ VL þ VR: (1)

Based on the continuity equation, the heat current from the
left bath into the subsystem is given by J ¼ i

2 Trð½H0
L �

HS; VL��Þ; (@ � 1) [17], where � is the total density ma-
trix, and we trace over the subsystem and reservoirs de-
grees of freedom. The heat current is defined as positive
when flowing left to right. In the steady state, the expecta-

tion value of the interaction is zero, Trð@VL

@t �Þ ¼ 0, and the

current at the L andR terminals is the same.We then obtain
[17]

J ¼ Tr½Ĵ��; Ĵ ¼ i

2
½VL;HS� þ i

2
½HS; VR�: (2)

The subsystem Hamiltonian assumes a diagonal form, and
we also consider separable couplings

HS¼
X
n

Enjnihnj; V�¼��SB�; S¼X
n;m

Sm;njmihnj:

(3)

FIG. 1 (color online). Examples of hybrid rectifiers treated in
this work. (a) ‘‘Type A’’: Energy exchange between dissimilar
terminals. The central object represents either a vibrational or a
radiation mode. (b) ‘‘Type B’’: Heat transfer between harmonic
solids mediated by the excitation of an anharmonic (truncated)
vibrational mode. Double-ended arrows represent strong (left)
and weak (right) subsystem-bath couplings.
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Here S is a subsystem operator, B� is an operator in terms
of the � bath degrees of freedom (DOF), and �� is the
subsystem-bath coupling strength, a real number. For sim-
plicity, we set Sm;n ¼ Sn;m. In what follows, we consider

situations where BL and BR have the same dependence on
the (respective) bath DOF, with different prefactors �L �
�R. We refer to this scenario as ‘‘parametric asymmetry.’’
Note that if the commutator ½HS; S� ¼ 0, the heat current
trivially vanishes.

We begin and discuss the type A rectifier, constructed by
adopting reservoirs with distinct properties, as we explain
below. First we derive a general expression for the heat flux
across the junction. The initial density matrix is assumed to
be a tensor product of subsystem �S and bath �B factors,
where �B ¼ �LðTLÞ � �RðTRÞ is a tensor product of the L
and R baths’ terms with ��ðT�Þ ¼ e�H0

�=T�=Tr�½e�H0
�=T��.

For convenience, we delete the direct reference to time. In
terms of Ta ¼ TL þ TR and � ¼ TL � TR, we can write
the initial total density matrix as

�ðTa;�Þ ¼ �B � �S

¼ 1

Z
e�½2TaðH0

LþH0
RÞ�2�ðH0

L�H0
RÞ�=ðT2

a��2Þ � �S; (4)

where Z ¼ Tr½�S�B� is the partition function with the trace
performed over the bath and system degrees of freedom.
Furthermore, without loss of generality, the system density
matrix is assumed to depend initially only on the average

temperature �S � �ð0Þ
S ðTa=2Þ.

The expectation value of the energy current is given

by evaluating JðTa;�Þ ¼ Tr½Ĵ�ðTa;�Þ�, where Ĵ is an

Heisenberg representation operator Ĵ ¼ eiHtĴð0Þe�iHt.
Expanded in powers of �, we get

JðTa;�Þ ¼ 2�

T2
a

�1ðTaÞ þ ð2�Þ2
T4
a

�2ðTaÞ þOðTa;�
3Þ; (5)

with the coefficients

�1ðTaÞ ¼ Tr½ĴðH0
L �H0

RÞ�T�; (6)

�2ðTaÞ¼ 1
2Tr½ĴðH0

L�H0
RÞ2�T���1ðTaÞTr½ðH0

L�H0
RÞ�T�:

(7)

Here �T ¼ 1
ZTa

�LðTa

2 Þ�RðTa

2 Þ�ð0Þ
S ðTa

2 Þ is the density matrix at

the average temperature TLþTR

2 with the partition function

ZTa
. Equation (7) was derived using the fact that Tr½Ĵ�T�

and all of its T derivatives are zero. Using the definition of
the current operator (2), we obtain an explicit expression
for �1:

�1ðTaÞ ¼ iTrf½S;HS�ð�LBLH
0
L þ �RBRH

0
RÞ�Tg: (8)

Since ½HS; S� � 0 [see discussion after Eq. (3)], the linear
term in J is finite. We now examine the onset of thermal
rectification, i.e., discuss the sufficient conditions for hav-
ing �2 � 0. While there might be some special values of
Ta where the two terms in (7) nullify, in general, since B�

andH0
� are independent operators, the result is finite. Thus,

in order to manifest rectification, it is enough to identify
when one of the terms in (7) is nonzero. (i) The first
expression is finite if Tr½FH0

L�T� � Tr½FH0
R�T�; F ¼

½S;HS�ð�LBLH
0
L þ �RBRH

0
RÞ. (ii) The second term is non-

zero if Tr½H0
L�T� � Tr½H0

R�T�. Based on (ii), we deduce
that rectification emerges when the reservoirs have differ-
ent mean energy [18]:

hH0
Li � TrL½�LðTÞH0

L� � TrR½�RðTÞH0
R� � hH0

Ri: (9)

As an example, consider baths including a one-

dimensional oscillator chain H0
� ¼ Hkin

� þH
pot
� , where

the kinetic energy Hkin
� is quadratic in momentum, and

the potential energy per particle is Cnq
n; n � 2, and q is

the particle’s coordinate. In the classical limit using the
equipartition relation, we obtain hH0

�i ¼ T�ð12 þ 1
nÞ.

Thermal rectification thus emerges if the reservoirs have
a nonidentical power n. Note that the separation to three
segments (L, subsystem, and R) is often artificial: The
junction could be practically made of a single structure
with a varying potential energy, e.g., a nanotube whose
composition gradually changes in space [15]. Finally, note
that our discussion could be generalized to cases where
V� ¼ ��S�B�; SL � SR; see Eq. (3).
We turn to the type B rectifier and show that for identi-

cal reservoirs rectification emerges when the subsystem
and reservoirs have different statistics, in conjunction
with some parametric asymmetry. It is easy to show that
under (3) the steady-state current (2) becomes J ¼
i
P

n;mEm;nSm;nTrBð�LBL�m;nÞ, where Em;n ¼ Em � En

and TrB denotes the trace over the L and R reservoirs
degrees of freedom. Employing the Liouville equation in
the interaction picture, the elements of the total density
matrix satisfy

d�m;n

dt
¼ �i½VðtÞ; �ð0Þ�m;n

�
Z t

0
d�½VðtÞ; ½Vð�Þ; �ð�Þ��m;n; (10)

where V ¼ VL þ VR and VðtÞ are interaction picture op-
erators. Following standard weak coupling schemes [19],
taking TrB½VðtÞ; �ð0Þ� ¼ 0, and assuming the Markovian
limit, the heat current becomes

J ¼ 1

2

X
n;m

Em;njSm;nj2PnðkLn!m � kRn!mÞ; (11)

where the transition rates are given by k�n!m ¼
�2
�

R1
�1 d�eiEn;m�hB�ð�ÞB�ð0Þi, and the population Pn ¼

TrBð�n;nÞ satisfies the differential equation
_P n ¼

X
�;m

jSm;nj2Pmk
�
m!n � Pn

X
�;m

jSm;nj2k�n!m: (12)

In the steady state _Pn ¼ 0, and we normalize the popula-
tion to unity

P
nPn ¼ 1. We consider next two representa-

tive models for the subsystem Hamiltonian and its
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interaction with the baths. In the first model, the subsystem
is a harmonic oscillator (HO) of frequency !: HS ¼P

nn!jnihnj. This can describe either a local radiation
mode [4,20] or a vibrational mode of the trapped molecule.
We also take S ¼ P

n

ffiffiffi
n

p jnihn� 1j þ c:c:, motivated by
the bilinear form V� / xB�, where x is a subsystem coor-
dinate [10]. This implies that only transitions between
nearest states are allowed:

k� � k�n!n�1 ¼ �2
�

Z 1

�1
d�ei!�hB�ð�ÞB�ð0Þi;

k�n�1!n ¼ e���!k�n!n�1:
(13)

We also introduce the short notation k� ¼ �2
�f�ðT�Þ, where

f�, defined through (13), encompasses the effect of the
bath operators. Solving (12) in the steady state using the
rates (13), the heat current is calculated with (11):

JðHOÞ ¼ � !½nLBð!Þ � nRBð!Þ�
nLBð�!Þ=kL þ nRBð�!Þ=kR ; (14)

where n�Bð!Þ ¼ ½e��! � 1��1 is the Bose-Einstein distri-
bution at T� ¼ 1=��, and n�Bð�!Þ ¼ �½n�Bð!Þ þ 1�.

Our second subsystem is a two-level system (TLS),
where HS ¼ !

2 �z and S ¼ �x. These terms may represent

an electronic spin rotated by the environment [5] or an
anharmonic molecular vibration [10]. Recalculating the
long-time population (12), the heat flux reduces to

JðTLSÞ ¼ !½nLS ð!Þ � nRS ð!Þ�
nLS ð�!Þ=kL þ nRS ð�!Þ=kR ; (15)

with the rates (13) and the spin occupation factor n�Sð!Þ ¼
½e��! þ 1��1. We analyze next the structure of Eqs. (14)
and (15). In each expression separately the currents for
forward and reversed temperature gradients deviate in
magnitude, if the denominators fulfill

nLð�!Þ
�2
LfLðTLÞ

� nLð�!Þ
�2
RfRðTLÞ

�
nRð�!Þ
�2
LfLðTRÞ

� nRð�!Þ
�2
RfRðTRÞ

; (16)

where n� are either the spin occupation factor or the Bose-
Einstein distribution. Note that the two sides of the last
equation depend on different temperatures; thus if fLðTÞ �
fRðTÞ resulting, e.g., from the use of dissimilar reservoirs,
the system generally rectifies heat besides special points in
the parameter space, depending on the details of the model.
This case reduces to the type A rectifier discussed above.
However, a more careful analysis of (16) reveals that
rectification prevails even when fLðTÞ ¼ fRðTÞ, as long
as �L � �R and the ratio n�ð�!Þ=fL;RðT�Þ depends on the
temperature T�. In other words, the relaxation rates’ tem-
perature dependence should differ from the central unit
particle statistics. As we show next, the function f�ðTÞ
reflects the reservoirs statistics. We therefore classify
type B rectifiers as junctions where the subsystem and
bath differ in their statistics, and the identical reservoirs
are asymmetrically coupled to the subsystem �L � �R. For
example, a TLS asymmetrically coupled to two harmonic

baths rectifies heat [10]. We specify next the terminals and
exemplify the two classes of thermal rectifiers in various
structures.
Spin bath.—Assuming the environment includes a set of

distinguishable noninteracting spin-1=2 particles (p ¼
1; 2; . . . ; P), the Hamiltonian is given by summing all
single particle contributions H0

� ¼ P
ph

0
�;p and B� ¼P

pb�;p. It can be shown that the relaxation rate (13)

reduces to

k� ¼ ��ð!Þn�Sð�!Þ; (17)

where ��ð!Þ ¼ 2��2
�

P
pjh0jpb�;pj1ipj2	½!þ 
pð0Þ �


pð1Þ�, with the p-particle eigenstates jiip and eigenvalues


pðiÞ (i ¼ 0; 1), and n�Sð!Þ ¼ ½e��! þ 1��1.

Solid/radiation field (harmonic bath).—The bath in-
cludes a set of independent harmonic oscillators, creation

operator ay�;j. System-bath interaction is further assumed to

be bilinear: H0
� ¼ P

j!ja
y
�;ja�;j; B� ¼ P

jða�;j þ ay�;jÞ.
This leads to the relaxation rate (13)

k� ¼ ���
Bð!Þn�Bð�!Þ; (18)

where ��
Bð!Þ ¼ 2��2

�

P
j	ð!j �!Þ is an effective

system-bath coupling energy.
Metal.—Consider a metallic terminal, including a set of

noninteracting spinless electrons, creation operator cy�;i,
where only scattering between electronic states within

the same lead is allowed: H0
� ¼ P

i
ic
y
�;ic�;i; B� ¼P

i;jc
y
�;ic�;j. The transition rate (13) can be written as

k�¼�2��2
�n

�
Bð�!Þ

�X
i;j

	ð
i�
jþ!Þ½n�Fð
iÞ�n�Fð
iþ!Þ�; (19)

with the Fermi-Dirac function n�Fð
Þ ¼ ½e��ð
���Þ þ 1��1

at the chemical potential ��. One could also write [20]

k� ¼ ���ðT�;!Þn�Bð�!Þ; (20)

where ��ðT�;!Þ ¼ 2�
R
d
½n�Fð
Þ � n�Fð
þ!Þ�F�ð
Þ,

with F�ð
Þ ¼ �2
�

P
i;j	ð
� 
j þ!Þ	ð
i � 
Þ. By assum-

ing that the density of states slowly varies in the energy
window !, the F function could be expanded around �. If
the Fermi energy is much bigger than the conduction band

edge, we obtain ��ðT�;!Þ � ��
Fð1þ 	�

T�

��
Þ, where ��

F ¼
2�!F�ð��Þ, and 	 is a constant of order one, measuring
the deviation from a flat band structure near �� [20].
Consider, for example, a type A solid-HO-metal recti-

fier, representing an electronic to vibrational energy con-
version device; see Fig. 1(a). This system might be realized
by attaching an insulating molecule to a metal (STM tip),
while the underneath surface is insulating. Setting the
coupling strength at both contacts to be the same �L

Bð!Þ ¼
�R
Fð!Þ, we can calculate the rectification ratioR � j Jð�Þ

Jð��Þ j
using (14), (18), and (20)
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R ¼ ð2þ 	R
TL

�R
Þð1þ 	R

TR

�R
Þ

ð1þ 	R
TL

�R
Þð2þ 	R

TR

�R
Þ � 1� �

	R

2�R

: (21)

Therefore, if the metal density of state varies with energy
(	 � 0), thermal rectification is presented [20]. Interest-
ingly, we can show that in a solid-TLS-metal junction R
could be modulated to be greater or smaller than 1 by vary-
ing the gap !. Thus, phonon-to-exciton heat conversion
could be made effective, while the exciton-to-phonon route
could be made ineffective, and vice versa. Figure 2 further
displays the tunability of a spin-subsystem-metal junction.
In the classical limit (!< T�) rectification can be substan-
tial, while in the quantum regime the effect is suppressed.
Modifying the subsystem-metal coupling strength largely
controls the rectification ratio (inset).

As a type B example, consider a solid-TLS-solid struc-
ture, modeling heat transfer between two macroscopic
solids through the excitation of an anharmonic vibrational
mode of an intermediated molecule [10]. In the classical

limit [see (15) and (18)], we get JðTa;�Þ / �
Ta
ð1� x �

Ta
þ

x2 �2

T2
a
þ 	 	 	Þ; x ¼ ð�L

B � �R
BÞ=ð�L

B þ �R
BÞ. This demon-

strates that even � terms, i.e., thermal rectification, are
directly linked to the parametric asymmetry.

Anharmonic interactions were, in particular, pointed out
as responsible for thermal rectification. While it is obvious
that harmonic systems do not rectify heat [21], not all
anharmonic-asymmetric systems do bring in the effect.
Consider a three-segment nonlinear oscillator chain where
all units have identical potential energy, but the central part
is parametrically-asymmetrically connected to the termi-
nals. According to our analysis, this system, of homoge-
neous energy spectra, will not rectify heat.

In summary, while previous studies were focused on
specific realizations, typically limited to the classical re-
gime, with insights based on numerical simulations, we

have analytically deduced a sufficient condition for the
onset of thermal rectification in generic hybrid structures
within an open quantum system approach: (i) The reser-
voirs should be made dissimilar; e.g., the L terminal is
harmonic, while the R side has an anharmonic potential
energy function. (ii) The reservoirs could be taken equal,
but their statistics should differ from that of the subsystem,
combined with some parametric asymmetry; e.g., a solid-
spin-solid junction rectifies heat when �L

B � �R
B.

Nonlinear energy transfer at the nanoscale is important
for cooling electronic and mechanical devices and for
controlling molecular reactivity. Our study applies to vari-
ous interfaces: metals, insulators, and noninteracting spins.
The central unit could represent a radiation/vibrational
mode or an electronic excitation. Thermal rectification is
thus an ubiquitous effect that could be observed in a variety
of systems, phononic [15], electronic [16], and photonic
[4,20].
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FIG. 2. Spin-HO-metal rectifier (solid line) and a spin-TLS-
metal rectifier (dashed line). The rectification ratio is presented
as a function of the subsystem spacing. Ta ¼ 0:5, � ¼ 0:1, 	R ¼
0:2, and�R ¼ 1. Main plot: The subsystem is equally coupled to
the two ends: �L ¼ �R

F ¼ 1. Inset: The effect can be tuned by
manipulating system-bath couplings: �L ¼ 1, �R

F ¼ 0:05.
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