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Nonlinearity in finite-Reynolds-number flow results in particle migration transverse to fluid stream-

lines, producing the well-known ‘‘tubular pinch effect’’ in cylindrical pipes. Here we investigate these

nonlinear effects in highly confined systems where the particle size approaches the channel dimensions.

Experimental and numerical results reveal distinctive dynamics, including complex scaling of lift forces

with channel and particle geometry. The unique behavior described in this Letter has broad implications

for confined particulate flows.
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Lateral migration of rigid spherical particles (radius a)
across streamlines to specific equilibrium positions has
been observed in macroscale pipe flows [1,2], with much
recent interest in understanding these nonintuitive results
theoretically and numerically [3–8]. Symmetry arguments
based on the form of the linearized equations associated
with viscosity-dominated low-Reynolds-number, i.e.,
Stokes, flow preclude cross-streamline migration. Thus
inertial contributions to the Navier-Stokes equations must
be significant in these flows for lateral migration to occur
[9]. As this effect introduces significant complexity into
analytical calculations, theoretical investigations have fo-
cused mainly on simplified model systems (e.g., parallel
plates and circular tubes) of typical cross-sectional dimen-
sion H with minimal particle confinement (a=H � 1).
This restriction allowed theoretical developments based
on ‘‘point-particle’’ or ‘‘point-force’’ approximations [3–
5] but could not account for the finite size of the suspended
particles, which is shown to be significant here.

Recently, we described inertially driven lateral migra-
tion of particles in microfluidic systems, where fluid inertia
is not usually significant [10,11]. We demonstrated prac-
tical applications for size-based particle filtration and fo-
cusing that exploited this nonlinear effect. The influence of
fluid inertia on particle-laden flows in confined systems
may also be of importance in exploring limits of operation
for chromatographic separations [12] and particle-laden
jets [13]. Numerical and theoretical results directly appli-
cable to complex confined systems are few [6] but may
yield new insights into particle dynamics when basic point-
particle assumptions become invalid. Here we take steps
towards uncovering basic rules for these systems by report-
ing equilibrium states for confined particles in finite-inertia
flows through rectangular cross-section microchannels. We
compare these observations with numerical results for the
same systems and find good agreement. This then allows us
to use the numerical model for further generalizations and
understanding concerning particle behavior in confined
systems.

The systems we studied used square or nearly square
cross-section channels populated by particles with diame-
ters approaching that of the channel width. The experi-
mental system was fabricated using soft-lithography
processes [10,11] and consisted of microchannels with a
length of 5 cm and widths and heights between 20 and
50 �m. Polystyrene particles (� ¼ 1:05 g=cm3, a ¼
5–20 �m) introduced into the channels were at dilutions
of 0.1%–0.5% w=v such that particle-particle interactions
were minimized. Particles, suspended in water, with 0.01%
Tween 20 to prevent aggregation, were flowed at controlled
rates using a syringe pump. In a subset of experiments to
determine the rotation rate of particles, we used emulsion
polymerized polydimethylsiloxane (PDMS) particles [10]
with small internal air defects.
For computational ease, the numerical model took the

reference frame where the sphere, of diameter a, was sta-
tionary in a square duct, of height H ¼ 2h, with sidewalls
moving backwards at the presumptive particle velocity up
[Fig. 1(a)]. Volumetric flow rate q was specified by setting
inlet or outlet boundary conditions to fully developed
laminar inflow or outflow in software (COMSOL Multi-
physics). This ensured that the flow at the position of the
sphere corresponded to that for one isolated particle (no
periodic boundary conditions). Rotation was modeled by
modifying the slip velocity at the surface of the sphere
according to its rigid rotation. With these boundary con-
ditions, and the fluid density � and viscosity �, cor-
responding to that of water, we conducted three-
dimensional, finite-element simulations solving the
steady-state Navier-Stokes equations. Beginning with the
initial condition of a stationary sphere (particle and walls at
rest), we determined forces and torques by integrating
force per area (F00) and torque density (r� F00) across
the particle surface in software. We then iteratively up-
dated the wall velocity (�up) and particle rotation until the

sphere translated force-free in the axial (z) direction and
rotated with zero net torque in all directions, to the limit in
numerical precision. We then determined the smaller trans-
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verse lift forces on the sphere that would yield lateral mi-
gration. Varying the sphere position yielded the steady-
state forces and rotations for a particle held to a particular
x-y position in the channel cross section [Fig. 1(b)]. These
results were plotted for a channel Reynolds number (Rc ¼
�UmH=�) of 80, where Um is the maximum channel
velocity. The resulting vector force field reveals four point
attractors centered at the faces of the fourfold symmetric
channel that agree with experimental results [Fig. 1(c)]
[11] and that are similar to four of the eight focusing points
identified in simulations reported by Chun and Ladd [6]
using the lattice-Boltzmann method.

Both experimental and numerical results indicated that
the locations of the attractors within the cross section of the
channel are strongly dependent on the ratio of particle to
channel dimensions a=H. Results for particle equilibrium
positions as a function of a=H are plotted in Figs. 2(a) and
2(b). Experimentally and numerically, we observed a shift
of the equilibrium position of the particle (xeq) towards the

channel center as a=H increases. For a=H � 1 we also
observed that xeq=h approaches �0:6 as in the original

studies of Segre and Silberberg (for a circular pipe) [1].
Particles were observed off-center but displaced from the
wall for the whole range of observed sizes (a=H ¼

0:1–0:9) even as the particle size approached the full width
of the channel.
Particles confined to one of four cross-sectional-plane

attractors translated at downstream velocities (up) which

were observed to be largely independent of particle size.
Experimentally measured velocities of particles (N ¼ 20)
at equilibrium for a=H in the range 0.4–0.9 varied only
slightly (1.6%) for a constant channel Reynolds number
(Rc ¼ 20). There was also no significant correlation of up
with particle size (r2 ¼ 0:03, linear regression). Numerical
results reproduced this behavior and yielded a similar 1%
deviation in particle velocity with no significant correlation
between particle size and velocity (r2 ¼ 0:16) for a=H
between 0.1 and 0.9. For simulations with Um equal to
1:6 m=s, the ratio up=Um averaged 0:67� 0:008.

However, particles at equilibrium positions were found
to rotate at rates dependent on particle size. High-speed
images allowed for the determination of particle rotation
rates by observing the frequency with which air defects
orbited about the center of each PDMS particle. As con-
finement increased, the nondimensional rotation rate
!h=up was observed to decrease experimentally and nu-

merically [Fig. 2(c)]. It is interesting to note the consis-
tency in measured rotation rates: For particles of the same
size, the standard deviation (N ¼ 6) for experimentally
measured rotation rates was only 2%.
With good agreement between the experimental data

and the numerical results for particle translation, rotation,
and equilibrium position, we used the model to explore the

FIG. 2. Numerical and experimental equilibrium positions and
rotations. (a) The equilibrium positions are shown for different
a=H. The scale bar is 10 �m. (b) Normalized equilibrium
positions as a function of a=H are plotted at Rc ¼ 20. The
dashed line denotes positions where particles would be in contact
with the wall. (c) The nondimensional rotation rate is plotted for
particles focused to equilibrium positions at Rc ¼ 20.

FIG. 1. Inertial lift forces in a square cross-section channel.
(a) Schematic of the channel and particle geometry used in this
work. (b) Inertial lift forces are simulated for a quarter of the
channel cross section and shown in this vector plot for a=H ¼
0:22 and Rc ¼ 80. Equilibrium positions are marked with
circles. (c) Averaged confocal cross section for 10 �m particles
flowing in a 50� 40 �m channel reveals similar attractors at the
channel faces.
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more general behavior of particles in confined systems.
Using our model, we inferred that lift forces follow a
complex functional form that varies less strongly with
a=H near the channel center line than in the near-boundary
regions. To investigate this functional dependence, we
computed the lateral forces along the midline of the chan-
nel cross section as a function of the dimensionless pa-
rameters x=h, a=H, and Rc (Fig. 3). Previous calculations
using matched asymptotic expansions that assume parti-
cles do not cause a disturbance to the main channel flow
have resulted in an inertial scaling for lift force FL ¼
fL�U

2
ma

4=H2, where fL is a nondimensional lift coeffi-
cient that is dependent on x=h and Rc [3–5]. However,
when our data are normalized using this analytical scaling
[Fig. 3(a)], a more complicated dependence on a=H can be
observed. The force as a function of normalized distance
(x=h) appears to collapse to a single curve far from the wall
(x=h < 0:5) when the lift force FL is instead normalized as
FL=ð�U2

ma
3=HÞ ¼ fLða=HÞ [Fig. 3(b)]. A similar scaling

was observed in circular cross-section channels (best fit of
a3:28).

Furthermore, in the near-wall region, the dimensionless
force appears to collapse to a single curve with
FL=ð�U2

ma
6=H4Þ [Fig. 3(c)]. This divergent scaling across

the channel cross section is clearly shown by plotting the
best fit exponent (n) for FL ¼ kan [Figs. 4(a) and 4(b)].
This behavior contrasts with that predicted using point-

particle assumptions, where the lift force was found to
scale identically throughout the channel [3–5]. The distinct
scaling in our confined system was found to be valid at
least to a=H ¼ 0:1. Below a=H ¼ 0:1, noise in the com-
puted force leads to unreliable results. Although the physi-
cal basis for the difference in scaling compared to previous
asymptotic theory is not known, future investigation is
warranted to relax a key assumption of previous theory
[3–5], that the particle motion does not disturb the main
channel flow, as this assumption is not valid in our system.
Lift also varies with the channel Reynolds number in a

complex fashion. Data in Figs. 3(a) and 3(d) show that near
the wall, fL decreases in magnitude with increasing Rc

while increasing in magnitude near the channel center line.
This response is in sharp contrast to previous predictions
when a=H � 1, where fL is observed to decrease with
increasing Rc over the whole domain [3,4]. Our results
indicating opposing dependences on the channel Reynolds
number in the two regions suggest that the positions of the
attractors should shift towards the walls with increasing Rc

in agreement with previous experimental results [7,8]. This
and previous scaling differences support the idea that two
separate physical processes account for particle behavior in
the near-wall region and channel center line [4,14].
Numerical analysis allows for the decomposition of the

flow into components to yield understanding of the under-
lying physical mechanisms. We found that a stationary
sphere always experienced a force directed away from
the wall [Fig. 5(a)]. However, when a sphere was allowed
to translate force-free with the flow but was constrained
from rotating, only small differences in lift force were
observed when compared to a sphere allowed to both rotate
and translate along with the flow. This suggests that rota-
tional motion is not a key contributor to inertial lift. In
separate simulations to decouple the shear gradient from

FIG. 3. Parameters affecting the nondimensional inertial lift
force. (a) The nondimensional force [fL ¼ FL=ð�Um

2a4=H2Þ] is
plotted as a function of the fractional distance from the channel
center line for the controlling dimensionless parameters. (b) The
dimensionless lift force is plotted using a new functional depen-
dence on a=H that better collapses the data near the channel
center line [fL � ða=HÞ]. (c) Normalization of the lift is modified
such that one can observe collapse to a single curve in the near-
wall region. (d) The lift force in the near-wall region (x=h >
0:52) appears to decrease with increasing Rc, but fL is seen to
increase near the channel center line (x=h > 0:52) for Rc greater
than 60.

FIG. 4. Scaling of inertial lift with particle diameter. (a) Best
fit exponents are plotted for fits of lift values at nine separate
particle diameters from 5 to 19 �m. At large values of x=h,
fewer points were used: (***) 6 and (****) 5 points. The near-
wall region (light gray) and center region (dark gray) show stable
fits at n ¼ 3 and 6, respectively, while a transition region (white)
where both effects contribute has divergent scaling. Error bars
correspond to error in the fit. (b) Plots of best fits for n ¼ 3 and 6
(solid black line) and fits based on previous asymptotic inertial
lift theory of n ¼ 4 (dotted gray line) at two cross-sectional
positions.
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wall-induced effects, we calculated forces for flows
through high-aspect ratio channels where the shear gra-
dient and shear rate both approach zero near the channel
center line [Fig. 5(b)]. This geometry yielded results that
are dramatically different when compared to the finite
shear-gradient case, where an extra reversal of sign for
lift force is observed near the channel center line.
Presumably, as the shear gradient approaches zero, wall-
directed shear-gradient-based lift is eliminated, which
makes the small center-directed lift due to the wall effect
observable. This may provide a partial explanation for the
observed reduction from four focusing positions in square
channels to two positions in high-aspect ratio channels
[Fig. 5(c)] [15].

The observed and predicted behaviors also have impor-
tant implications for development of practical applications
for inertial migration in confined flows [10,11,16,17].
Given the novel apparent scaling of inertial lift forces for
highly confined systems, previous ‘‘inertial focusing’’ the-
ory [10,11] based on analytical models assuming small
a=H should be revisited. Additionally, we have shown
that particle equilibrium position is dependent on particle
size, suggesting another mechanism for continuous sepa-

ration. Unexpectedly, even at different equilibrium posi-
tions within the flow, particle velocity in the direction of
flow appears constant and independent of particle size to
within experimental and numerical precision. As a result,
the general assumption that the particle velocity will equal
the unperturbed stream velocity at its center point should
be reexamined when a=H is large [12,18,19].
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FIG. 5 (color online). Deconstructing inertial lift. (a) The non-
dimensional force is plotted for a=H ¼ 0:22 and Rc ¼ 80. Filled
triangles correspond to no constraints. Open triangles have a
constraint that the sphere is not free to rotate. Squares show
data when the sphere is constrained from translating and either
constrained from rotation (open) or not (closed). (b) The non-
dimensional force is plotted along with a measure of the non-
dimensional shear gradient experienced by a particle for two
different aspect ratio channels and a=H ¼ 0:44 and Rc ¼ 80.
The gray region indicates a reversal of sign in lift for the 4:1
aspect ratio. (c) Images showing the top and side views of high-
aspect ratio channels show two particle equilibrium positions.
Dotted lines outline the channels. The scale bar is 50 �m.
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