
Density of States and Extinction Mean Free Path of Waves in RandomMedia:
Dispersion Relations and Sum Rules

R. Carminati1,* and J. J. Sáenz2,3
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We establish a fundamental relationship between the averaged local density of states and the extinction

mean free path of waves propagating in random media. From the principle of causality and the Kramers-

Kronig relations, we show that both quantities are connected by dispersion relations and are constrained

by a frequency sum rule. The results should be helpful in the analysis of wave transport through complex

media and in the design of materials with specific transport properties.
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Fundamental questions in coherent transport of electro-
magnetic, electronic, or acoustic waves [1,2] as well as
applications to imaging in complex media [3] have made
wave propagation in random media a central issue in
physics. Randomly or periodically structured materials
allow one to design media or devices with unconventional
properties [4–10].

The extinction mean free path (MFP) and the density of
states (DOS) are fundamental concepts in coherent wave
transport. The extinction MFP ‘e, defined by ‘

�1
e ¼ ‘�1

s þ
‘�1
a , with ‘s and ‘a the scattering and absorption mean free

paths, respectively, describes the attenuation of the aver-
aged (coherent) field. When absorption is negligible, the
extinction MFP equals the scattering MFP. The latter is an
important quantity since k‘s is a measure of the strength of
scattering, k being the wave number in the medium. In
particular, the transition to Anderson localization in three
dimensions is expected when k‘s & 1, according to the
Ioffe-Regel criterion [1]. The DOS shapes many macro-
scopic transport properties [11]. The spectral behavior of
‘s and the DOS, and the influence of the DOS on the Ioffe-
Regel criterion, were put forward in early studies of
Anderson localization of light [12]. Since then, it has
been often implicitly assumed that a relation between the
DOS and MFP exists, such that a (local) minimum in the
MFP should be somehow associated to a minimum in the
DOS. The local density of states (LDOS) has also received
increasing interest. The LDOS drives the spontaneous
emission of light [13] and is at the root of novel imaging
techniques based on field correlations [14]. Statistics of the
LDOS characterize the transport regime [15], speckle pat-
terns [16], or the local structure of a complex medium [17].

In this Letter, we establish a fundamental relationship
between the averaged LDOS in a random medium and the
extinction MFP. As a consequence of causality and the
Kramers-Kronig relations, we show that both quantities
are connected by dispersion relations and are constrained
by a frequency sum rule. We focus the derivation on light

propagation in scattering media, but the results should be
applicable to any kind of waves.
Consider a scattering medium made of scatterers ran-

domly distributed in free space (or in an otherwise homo-
geneous background medium). The (dyadic) Green
function describes the response at point r, and at a given
frequency !, to a point electric-dipole source p located at
point r0 through the relation EðrÞ ¼ �0!

2Gðr; r0Þp. For a
given configuration of the random medium and for a point
in vacuum (outside the scatterers), the LDOS at a point r is
given by �ð!; rÞ � 2!=ð�c2ÞImTrGðr; rÞ, where c is the
speed of light in vacuum and Tr denotes the trace of a
tensor [11]. An extra term accounting for evanescent states
associated with the magnetic field also exists for a point
located in vacuum but in the near field of a surface [18].
The LDOS defined above, the quantity of interest in the
present discussion, is the relevant part of the LDOS enter-
ing Fermi’s ‘‘golden rule’’ in the calculation of the sponta-
neous decay rate of atoms [11,19,20]. The full LDOS, that
would give the local energy density at equilibrium, con-
tains an additional term describing the energy stored in the
material degrees of freedom of the scatterers [outside the
scatterers, the LDOS is entirely given by �ð!; rÞ] [11,19].
After averaging over the positions of the scatterers and

assuming statistical translational invariance, the averaged
Green function obeys the Dyson equation [1,21]:

hGðkÞi ¼ G0ðkÞ þG0ðkÞ�ðkÞhGðkÞi; (1)

where G0ðkÞ ¼ ½ðk2 � k20ÞI� kk��1 is the Fourier trans-

form of the free-space Green function, with I the unit
tensor, k0 ¼ !=c, and �ðkÞ is the self-energy containing
the sum of all multiply connected scattering events [21].
From Eq. (1), the averaged Green function can be written
as

hGðkÞi ¼ I

ðk2 � k20ÞI� kk��ðkÞ : (2)

From this expression, one identifies the effective dielectric
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function �effðkÞ ¼ Iþ k�2
0 �ðkÞ, which drives the propa-

gation of the averaged field in the random medium. The
effective dielectric function is, in general, a nonlocal and
anisotropic dyadic response function. In practice, deter-
mining the effective dielectric function is a difficult prob-
lem, that can be solved only under some (sometimes
severe) approximations [5,22]. In the present study, we
do not need to refer to a specific model. Our arguments
rely only on the existence of the effective dielectric
function.

Under the following hypotheses, (i) the random medium
is isotropic on average, and (ii) only field variations on
scales larger than the size of the scatterers and the corre-
lation distance between scatterers are accounted for, the
dielectric function becomes a local and isotropic (scalar)
function [1,22], i.e., �effðkÞ ¼ �effI. We assume that these
conditions are satisfied in the following. The averaged
Green function can be decomposed into transverse and

longitudinal parts hGi ¼ hG?i þ hGki, which in real space
read as

hG?ðRÞi ¼
�
Iþ 1

k2eff
rr

�
expðikeffRÞ � 1

4�R
; (3)

hGkðRÞi ¼ P

�
Iþ 1

k2eff
rr

�
1

4�R
�L�ðRÞ; (4)

where R ¼ r� r0 and keff ¼ neffk0, with neff ¼ ffiffiffiffiffiffiffi
�eff

p
the

effective (complex) refractive index of the randommedium
[23]. The symbol P stands for principal value, and L is a
dyadic tensor that describes the singular behavior of the
Green function at the origin. For a spherical exclusion
volume, one has LðRÞ ¼ I=ð3k2effÞ [24].

The singular term in the Green function contains an
imaginary part (due to losses by scattering and/or absorp-

tion) so that ImTrhGkðRÞi diverges at the origin. The study
of the singularity problem, in the context of spontaneous
emission in absorbing dielectrics, lead to an extension of
the definition of LDOS: It is given by the imaginary part of
the transverse Green function hG?i [25,26]. We shall use
this definition in the present study:

�ð!Þ ¼ 2!

�c2
ImTrhG?ðR ¼ 0Þi: (5)

Using Eq. (3), this leads to �ð!Þ ¼ �0ð!ÞReneffð!Þ, with
�0ð!Þ ¼ !2=ð�2c3Þ the LDOS in free space [26]. The
averaged LDOS is given by the real part of the effective
refractive index.

In the context of spontaneous decay rate calculations in
dielectrics, one usually includes the so-called local field
corrections [20,25]. It has been shown that these correc-
tions are a consequence of the local correlations in the
scatterer positions induced by the nonoverlapping condi-
tions [19]. To keep consistency with assumptions (i) and
(ii) used previously, we will disregard the influence of such

correlations and keep expression (3) for the averaged
transverse Green function.
The second important quantity in our discussion is the

extinction MFP ‘e, defined as the decay length of the
intensity of the averaged field by scattering and absorption
[1], given by the imaginary part of the effective refractive
index [22,23]: ‘eð!Þ ¼ c=½2!Imneffð!Þ�.
We now establish the relationships between the averaged

LDOS and MFP. From the principle of causality, one can
derive the Kramers-Kronig (KK) relations that connect the
real and imaginary parts of the susceptibility of any linear
material. Regarding the optical response, the KK relations
are usually written in terms of the dielectric function [27].
It can be shown that the refractive index in passive mate-
rials is also a quantity that satisfies the KK relations [28]. A
straightforward application of the KK relations to the
effective refractive index, using the expressions of �ð!Þ
and ‘eð!Þ given above, leads to

�ð!Þ
�0ð!Þ ¼ 1þ c

�
P
Z 1

0

½‘eð!0Þ��1

!02 �!2
d!0; (6)

1

‘eð!Þ ¼ �4�!2c2P
Z 1

0

�ð!0Þ � �0ð!0Þ
!02ð!02 �!2Þ d!

0: (7)

These dispersion relations demonstrate that the averaged
LDOS and the extinction MFP are not independent and
provide a method to determine one quantity from the
spectrum of the other one. In particular, Eq. (6) shows
that, from an extinction spectrum (a natural measurement
in spectroscopy), one can deduce the averaged LDOS.
From the KK relations, sum rules for the dielectric

constant and the refractive index can be obtained [29]. In
particular, it is well established that the refractive index of
any passive and causal medium satisfies

R1
0 !Imneffð!Þ�

½Reneffð!Þ � 1�d! ¼ 0 and
R1
0 ½Reneffð!Þ � 1�d! ¼ 0

[29]. Beyond the principle of causality, the derivation of
these sum rules relies on the assumption of a material
behaving as a free-electron gas in the high frequency limit:
�effð!Þ � 1�!2

p=!
2 when ! ! 1, where !p is an ef-

fective plasma frequency. Note that this high frequency
behavior is expected as soon as the frequency is much
larger than the resonance frequencies of the effective me-
dium. The sum rules for the effective refractive index can
be translated into new sum rules involving the averaged
macroscopic DOS and the extinction MFP. In particular,
we obtain

Z 1

0

�ð!Þ � �0ð!Þ
!2‘eð!Þ d! ¼ 0: (8)

This relation is the main result of this Letter. It demon-
strates that the spectra of the averaged LDOS and of the
extinction MFP are intimately connected and constrained
by a simple sum rule. This sum involves the extinction
mean free path and applies to media in which extinction is
provided by scattering and/or absorption. The simplicity
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and the generality of this relation are striking. Let us
remind that this sum rule and the dispersion relations (6)
and (7) are valid under three conditions: (i) The medium is
passive and causal, (ii) the medium behaves as a free-
electron gas in the high frequency limit, and (iii) the ef-
fective medium is described by an isotropic and local
dielectric function. The second sum rule for the refractive
index leads to a relation involving the averaged LDOS
only:

R1
0 ½�ð!Þ � �0ð!Þ�=!2d! ¼ 0. This sum rule was

established previously in the context of spontaneous emis-
sion in dielectric media [30]. Regarding wave propagation
in randommedia, it establishes a constraint on the potential
modifications of the averaged LDOS. In particular, it
shows that �ð!Þ is necessarily lower than the LDOS in
free space �0ð!Þ in a spectral range and greater than �0ð!Þ
in another spectral range [the numerator �ð!Þ � �0ð!Þ has
to change sign for the integral to vanish]. This behavior is
also given by Eq. (8) because ‘eð!Þ> 0 in a passive
medium.

The dispersion relations and sum rules involve fre-
quency summations up to infinity. One can wonder whether
there is any frequency range in which, on the one hand,
dispersion phenomena are important but, on the other hand,
the assumption of a local effective dielectric function stills
holds. For homogeneous media, this issue has been dis-
cussed in Ref. [27]. For random media, frequency disper-
sion phenomena are important in the vicinity of a
resonance frequency !0 of the effective dielectric function
�eff . At frequencies ! � !0, �eff tends to unity and the
integrand in the KK relations vanishes. If ‘c denotes the
correlation length of the randommedium (‘c equals at least
the size of the particles), the condition �0 � ‘c must be
satisfied for our theory to be valid, where �0 ¼ 2�c=!0. In
this case, in the frequency region where the integrand in the
KK contributes, the condition of locality of the effective
dielectric function is satisfied. This condition can be sat-
isfied, e.g., for a system of semiconductor or metallic
particles with size a, that can exhibit a (phonon or plas-
mon) resonance with �0 � a, or with a weakly correlated
atomic system in which �0 is fixed by the atomic transition
and can be much greater than the mechanically induced
correlations. The condition might be more difficult to
satisfy for Mie resonances, for which �0 & a.

In the following, we illustrate the general behavior
induced by relations (6)–(8) in a particular case. Let us
consider a random scattering medium with an effective
dielectric function exhibiting a resonance at a particular
frequency!0. The resonance can be induced by an internal
resonance of the scatterers or of purely geometric origin (or
both). We choose a Lorentz model of the form

�effð!Þ ¼ 1þ F!2
0

!2
0 �!2 � i!�

; (9)

where the parameter F is an effective oscillator strength
and � is the linewidth. From this expression, the effective

index neff ¼ ffiffiffiffiffiffiffi
�eff

p
is readily obtained numerically, as well

as the spectra of the averaged DOS �ð!Þ and the extinction
MFP ‘eð!Þ. A regime of strong scattering is identified
when Imneffð!Þ> Reneffð!Þ, which corresponds to k‘e <
1=2, where k ¼ Rekeff is the wave number in the medium
[11]. In this regime, the effective medium satisfies
Re�effð!Þ< 0, and the averaged field is strongly damped
(the effective medium has a metallic character). In the
regime k‘e > 1=2, one hasRe�effð!Þ> 0, and the effective
medium has a dielectric character. The transition between
these two regimes is driven by the parameterP ¼ F!0=�.
For P < 2, one has Re�effð!Þ> 0 at all frequencies. For
P > 2, there is a frequency range for which Re�effð!Þ< 0
or, equivalently, k‘e < 1=2.
We show in Fig. 1 the spectra of the averaged LDOS in

the case of an effective medium with P ¼ 1 (dashed line)
and P ¼ 20 (solid line). The corresponding spectra for the
MFP are shown in Fig. 2. The averaged LDOS for P ¼ 1
(dashed line in Fig. 1) shows a typical dispersion behavior
around the resonance frequency (corresponding to � ¼ 0).
At the resonance frequency, the MFP (dashed line in Fig. 2)
exhibits a minimum. This is a classical behavior of quan-
tities connected by KK dispersion relations. For P ¼ 20,
the averaged LDOS (solid line in Fig. 1) exhibits a region
with a low value (pseudogap), corresponding to the spec-
tral region for which Re�effð!Þ< 0 or k‘e < 1=2. Close to
the lower pseudogap band edge, the LDOS exhibits a
strong oscillation that is a feature of the underlying disper-
sion relation. In the same spectral range, the extinction
MFP exhibits a region with a low value. This behavior,
illustrated here in a particular case, is dictated by the
dispersion relations and the frequency sum rule. These
relations give a rigorous and quantitative basis to a behav-
ior that is implicitly assumed in many discussions on wave
transport in random media.
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FIG. 1 (color online). Normalized averaged LDOS
�ð!Þ=�0ð!Þ versus the normalized detuning from resonance
�=� ¼ ð!�!0Þ=�. The effective dielectric function �effð!Þ is
given by Eq. (9), with !0 ¼ 1015 Hz, � ¼ 109 Hz, and P ¼ 1
(dashed line) or P ¼ 20 (solid line).
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We also note that if the effective dielectric constant
is known analytically, one has Im�eff ¼ 2ImneffReneff
at each frequency. This leads to Im�effð!Þ ¼ c=
½!‘eð!Þ��ð!Þ=�0ð!Þ. This explicit relation is useful
when an analytical model of �eff is available, a situation
that occurs only in a few specific cases.

In summary, from the principle of causality, we have
established dispersion relations and a frequency sum rule
that constrain the spectral variations of the averaged LDOS
and the extinction MFP in a random scattering medium and
sustain general features of their spectral behavior close to a
resonance of the effective medium. Our results are strictly
valid in media with negligible correlations in the scatterer
positions. Experimental deviations from KK relations
could then be a signature of microscopic correlations.
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FIG. 2 (color online). Extinction MFP ‘eð!Þ in micrometers
versus the normalized detuning from resonance �=� ¼ ð!�
!0Þ=�. The parameters are as in Fig. 1. For clarity, the curve
corresponding to P ¼ 1 has been scaled by a factor of 0.1.
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