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We present measurements of single-qubit gate errors for a superconducting qubit. Results from

quantum process tomography and randomized benchmarking are compared with gate errors obtained

from a double � pulse experiment. Randomized benchmarking reveals a minimum average gate error of

1:1� 0:3% and a simple exponential dependence of fidelity on the number of gates. It shows that the

limits on gate fidelity are primarily imposed by qubit decoherence, in agreement with theory.
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The success of any computational architecture depends
on the ability to perform a large number of gates and gate
errors meeting a fault-tolerant threshold. While classical
computers today perform many operations without the
need for error correction, gate error thresholds for quantum
error correction are still very stringent, with conservative
estimates on the order of 10�4 [1,2].

Gate fidelity is the standard measure of agreement be-
tween an ideal operation and its experimental realization.
Beyond the gate fidelity, identifying the nature of the
dominant errors in a specific architecture is particularly
important for improving performance. While NMR, linear
optics, and trapped ion systems are primarily limited by
systematic errors such as spatial inhomogeneities and im-
perfect calibration [3–5], for solid-state systems decoher-
ence is the limiting factor. The question of how to measure
gate errors and distinguish between various error mecha-
nisms has produced different experimental metrics for gate
fidelity, such as the double � metric employed in super-
conducting qubits [6], process tomography as demon-
strated in trapped ions, NMR, and superconducting
systems [3–5,7], and randomized benchmarking, as per-
formed in trapped ions and NMR [8,9].

Here we present measurements of single-qubit gate fi-
delities where the three metrics mentioned above are im-
plemented in a circuit QED system [10,11] with a
transmon qubit [12]. We compare the results for the differ-
ent metrics and discuss their respective advantages and
disadvantages. We find single-qubit gate errors at the
1%–2% level consistently among all metrics. These low
gate errors reflect recent improvements in coherence times
[13,14], systematic microwave pulse calibration, and ac-
curate determination of gate errors despite limited mea-
surement fidelity. In circuit QED, measurement fidelity can
be as high as 70%, though in this experiment it is �5%, as
readout is not optimized. The magnitude of errors and their
dependence on pulse length are consistent with the theo-
retical limits imposed by qubit relaxation and the presence

of higher qubit energy levels, with only small contributions
from calibration errors.
We first discuss the double � metric (�-�). Similar to

the ‘‘bang-bang’’ technique [15], two � pulses are applied
in succession, which ideally should correspond to the
identity operation 1. The aim of �-� is to determine the
deviations from 1 by measuring the residual population of
the excited state following the pulses. Despite its simplic-
ity, this metric captures the effects of qubit relaxation and
the existence of levels beyond a two-level Hilbert space.
However, in general, it is merely a rough estimate of the
actual gate fidelity as it does not contain information about
all possible errors. In particular, errors that affect only
eigenstates of �x or �y and deviations of the rotation angle

from � are not well captured by this measure.
A second metric that, in principle, completely reveals

the nature of all deviations from the ideal gate operation is
quantum process tomography (QPT) [16]. Ideally, QPT
makes it possible to associate deviations with specific error
sources, such as decoherence effects or nonideal gate pulse
calibration. However, in systems with imperfect measure-
ment, it is difficult to assign the results from QPT to a
single gate error. Moreover, the number of measurements
that are necessary for QPT scales exponentially with the
number of qubits.
While QPT provides information about a single gate,

randomized benchmarking (RB) [8,17] gives a measure of
the accumulated error over a long sequence of gates. This
metric hypothesizes that with a sequence of randomly

chosen Clifford group generators (Ru¼e�i�u�=4, u¼x;y)
the noise can behave as a depolarizing channel, such that
an average gate fidelity can be obtained. In contrast to both
�-� and QPT, RB is approximately independent of errors
in the state preparation and measurement. Also, while the
other metrics measure a single operation and extrapolate
the performance of a real quantum computation, RB tests
the concatenation of many operations (here up to �200),
just as would be required in a real quantum algorithm.
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The gate error metrics are performed in a circuit QED
sample consisting of a transmon qubit coupled to a co-
planar waveguide resonator [10–12]. The theory and dis-
cussion, however, extend generally to all qubit systems
including ions and spins. The sample fabrication and
measurement techniques are similar to those in
Refs. [13,14,18]. Experimentally measured parameters in-
clude the qubit-cavity coupling strength given by g0=� ¼
94:4 MHz, the resonator frequency !r=2� ¼ 6:92 GHz,
the photon decay rate of �=2� ¼ 300 kHz, and the qubit
charging energy EC=2� ¼ 340 MHz. The qubit is detuned
from its flux sweet spot by �1:5 GHz with a resonant
frequency of !01=2� ¼ 5:96 GHz and coherence times
of T1 ¼ 2:2 �s and T�

2 ¼ 1:3 �s.
In analogy to the NMR language, our single-qubit op-

erations are rotations about the x, y, and z axes of the Bloch
sphere [19]. Rotations about any axis in the x-y plane are
performed using microwave pulses. The carrier frequency
is resonant with the qubit transition frequency, and the
pulse amplitudes and phases define the rotation angle and
axis orientation, respectively. In all experiments, the pulse
shape is Gaussian with standard deviation � between 1 and
12 ns. The pulses are truncated at 2� on each side, and a
constant buffer time of 8 ns is inserted after each pulse to
ensure complete separation of the pulses. Using tune-up
sequences similar to those used in NMR [20], each pulse
amplitude is calibrated by repeated application of the pulse
and matching the measurement outcome to theory. (See
supplementary material [21] for details.)

Double �.—After calibration, we perform the �-� ex-
periments with � ¼ 2 ns and varying separation time tsep
between the two � gates. Subsequently, the excited state
probability P1 is measured, as shown in Fig. 1(a). Because
of the decay of the excited state following the first � pulse,
P1 increases as a function of tsep. This can be accurately

captured in simulations with a simple theoretical model
consisting of the dynamics from a master equation for a
driven three-level atom subject to relaxation and dephas-
ing, with corresponding time scales T1 and T�. The coher-

ent evolution is governed by the Hamiltonian

H ¼ @

X

j¼1;2

½!0j�
y
j �j þ "jðtÞð�y

j þ �jÞ�; (1)

where �j ¼ jj� 1ihjj is the lowering operator for the

multilevel atom with eigenenergies @!j. The correspond-

ing transition energies are denoted @!ij ¼ @ð!j �!iÞ.
Drive strength and pulse shapes are determined by

"jðtÞ ¼
g2j

!r �!j�1;j

½XðtÞ cosð!dtÞ þ YðtÞ sinð!dtÞ�: (2)

Here gj �
ffiffiffi
j

p
g0 is the transmon coupling strength [12],

!d=2� is the frequency of the drive, and XðtÞ and YðtÞ are
the pulse envelopes in the two quadratures.

The inset in Fig. 1(a) shows the experiment with tsep
varying between 0 and 30 ns repeated 2:5� 106 times. We
measure P1 ¼ 0:014� 0:008 at tsep ¼ 0 ns. Dividing this

probability by 2 as in Ref. [6] gives a single gate error of
0:7� 0:4%.
Conceptually, the �-� measure is similar to the visibil-

ity measure used byWallraff et al. in Ref. [22], correspond-
ing to ð1� h�ziÞ=2 after a single � pulse. Figure 1(b)
shows Rabi oscillations made by increasing the length of
a pulse resonant with the qubit transition frequency. The
visibility is found to be 100:4� 1:0%. This also agrees
with our simple theoretical model taking into account the
T1, T2, and third level at our specific operating point.
Quantum process tomography.—The idea behind QPT is

to determine the completely positive map E, which repre-
sents the process acting on an arbitrary input state �. The
theory is detailed in Refs. [16,23] and can be summarized
as follows. Any process for a d-dimensional system (for
1 qubit d ¼ 2) can be written as

E ð�Þ ¼ Xd2�1

m;n¼0

�mnBm�B
y
n ; (3)

where fBng are operators which form a basis in the space of
d� d matrices and � is the process matrix. To determine
�, we prepare d2 linearly independent input states f�in

n g.
For every input state, the output state �out

n ¼ Eð�in
n Þ is

determined by state tomography. The process matrix is
then obtained by inverting Eq. (3). However, in general,
this last step does not guarantee a completely positive map.
To remedy this, we use a maximum-likelihood estimation
based on Ref. [4], which is detailed in the supplementary
material [21].
We perform QPTon the three processes 1, Rxð�=2Þ, and

Ryð�=2Þ using the four linearly independent input states
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FIG. 1. (a) Excited state qubit population P1 vs separation time
tsep between two successive � pulses (� ¼ 2 ns). The data agree

well with the simulation (solid line) involving relaxation and
decoherence. The inset shows additional data taken for 0 �
tsep � 30 ns. The residual population corresponding to the mini-

mal separation is found to be 0:014� 0:008 giving a single-qubit
gate error of 0:7� 0:4%. (b) Rabi oscillations show a visibility
of 100:4� 1:0%.
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j0i, j1i, ðj0i þ ij1iÞ= ffiffiffi
2

p
, and ðj0i � j1iÞ= ffiffiffi

2
p

. The results of
this procedure are shown in Fig. 2. Here bar plots of the real
and imaginary parts of � are shown for a pulse with � ¼
2 ns in the Pauli basis fBng ¼ f1; �x; �y; �zg. We can

compare our data to the ideal process matrices �ideal. For
instance, for the 1 process, we expect �11 ¼ 1 and �uu0 ¼
0 otherwise, which is in good agreement with the measured
results. Small deviations from �ideal arise from preparation
and measurement errors, gate over-rotations, decoherence
processes, qubit anharmonicity � [24], etc. Calibration
errors of the pulses in the x axis are seen as a nonzero
Imf�1�x

g, and a drive detuning error is exhibited in

Imf�1�z
g.

From the experimentally obtained process matrix � and
its ideal counterpart �ideal, we can directly calculate the
process fidelity Fp ¼ Tr½�ideal�� and the gate fidelity

Fg ¼ R
dc hc jUyEðc ÞUjc i. Here the integral uses the

uniform measure dc on the state space, normalized such
that

R
dc ¼ 1. Fg can be understood as how close E comes

to the implementation of the unitaryU when averaged over
all possible input states jc i. From Refs. [25,26], there is a
simple relationship between the Fp and Fg, namely, Fg ¼
ðdFp þ 1Þ=ð1þ dÞ. For the three processes displayed in

Fig. 2, Fp is 0.96, 0.95, and 0:95� 0:01, respectively.

Figure 3 shows 1� Fg versus pulse length. The error

bars are standard deviations obtained by repeating the
maximum-likelihood estimation for input values chosen
from a distribution with mean and variance given by mea-
surement. The majority of the experimental gate errors lie
above the theoretical errors from a simulation incorporat-

ing T1, T2, and �. We attribute the higher scatter of these
errors to systematic slow qubit frequency drift of
�1–3 MHz during the course of the tomography
experiments.
Randomized benchmarking.—The RB protocol, de-

scribed in Knill et al. [8], consists of the following:
(i) Initialize the system in the ground state; (ii) apply a
sequence of randomly chosen pulses in the pattern

Q
iCiPi,

where Ci are Clifford group generators e�i�u�=4, with u ¼
x; y, and Pi are Pauli rotations, i.e., 1, �x, �y, and �z;

(iii) apply a final Clifford or Pauli pulse to return to one of
the eigenstates of �z; (iv) perform repeated measurements
of �z and compare with theory to obtain the fidelity.
We choose the number of randomizations, sequences,

and sequence lengths exactly as in Ref. [8] with the longest
sequences consisting of 196 pulses. All 544 final pulse
sequences are applied for 250 000 measurements each,
taking a total time of about an hour.
The average fidelity is an exponentially decaying func-

tion of the number of gates N and approaches 0.5 for large
N. Figure 4(a) plots the final state fidelity as a function of
the number of computational gates for all randomized
sequences with � ¼ 3 ns. An average error per gate of
0:011� 0:003 is obtained by averaging over all of the
randomizations and fitting to the exponential decay. The
excellent fit to a single exponential indicates a constant
error per gate, consistent with uncorrelated random gate
errors due to T1 and T�, and no other mechanisms signifi-

cantly affecting repeated application of single-qubit gates.
The reduction of the error by a factor of�1=3 from QPT is
likely due to the overestimation of errors in QPT where
gate errors cannot be isolated from measurement and
preparation errors.
The benchmarking protocol is repeated for different

pulse widths �, and the average error per gate is extracted,
plotted versus total gate length, and compared to theory in
Fig. 4(b). At large gate lengths, experimental results agree
well with theory. In this regime, errors are dominated by
relaxation and dephasing. At small gate lengths, the gate
fidelity is limited by the finite anharmonicity and the re-
sulting occupation of the third level. We obtain error bars
from standard deviations in error per gate having generated

FIG. 2 (color online). Real and imaginary parts of the experi-
mentally obtained process matrix � for the three processes (a) 1,
(b) Rxð�=2Þ, and (c) Ryð�=2Þ for � ¼ 2 ns.

FIG. 3 (color online). Gate error vs total pulse length obtained
from quantum process tomography plotted for the processes 1,
Rxð�=2Þ, and Ryð�=2Þ. The dashed line is a master-equation

simulation for the Rxð�=2Þ process.
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fidelity values from distributions with means and variance
obtained from the experiment and theory. The optimal gate
length is found to be 20 ns, as shown in Fig. 4(b), though
with optimized pulse shaping we anticipate improving the
gate fidelity by another order of magnitude [27].

Conclusions.—We have systematically investigated gate
errors in a circuit QED system by measuring gate fidelity
using the �-� metric, quantum process tomography, and
randomized benchmarking. Table I summarizes our results
and displays consistently low gate errors across all metrics.
From comparison with theory, we conclude that the ob-
served magnitude of errors fully agrees with the limitations

imposed by qubit decoherence and finite anharmonicity.
Specifically, in the T1 limited case and for moderate gate
lengths tg, we find that the gate error scales as �tg=T1.
Once coherence times of superconducting qubits and pulse
shaping are improved, the aforementioned metrics will be
useful tools for characterizing gate fidelities as they ap-
proach the fault-tolerant threshold. Randomized bench-
marking will be a particularly attractive option for
multiqubit systems due to its favorable scaling properties
as compared to QPT.
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FIG. 4 (color online). (a) Average fidelity vs number of ap-
plied computational gates. Computational gates consist of a
randomized Pauli with a randomized Clifford generator. For �
of 3 ns we obtain an average gate error of 1.1%. (b) Average
error per gate (experimental and theoretical) at different pulse
widths. The rise for �< 2 ns corresponds to the onset of
limitation by the third level of the transmon. The increase in
error per gate for �> 2 ns is due to the limitation by relaxation.

TABLE I. Gate errors for the three metrics used in this work.
The measurements show consistently low gate errors of the order
of 1%–2%.

Metric Measured error in %

�-� 0:7� 0:4
Process tomography: 1 2:4� 1:1
Process tomography: Rxð�=2Þ 2:6� 0:8
Process tomography: Ryð�=2Þ 2:2� 0:7
Randomized benchmarking 1:1� 0:3
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