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A central challenge for implementing quantum computing in the solid state is decoupling the qubits

from the intrinsic noise of the material. We investigate the implementation of quantum gates for a para-

digmatic, non-Markovian model: a single-qubit coupled to a two-level system that is exposed to a heat

bath. We systematically search for optimal pulses using a generalization of the novel open systems gradi-

ent ascent pulse engineering algorithm. Next to the known optimal bias point of this model, there are op-

timal pulses which lead to high-fidelity quantum operations for a wide range of decoherence parameters.
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A promising class of candidates for the practical real-
ization of scalable quantum computers are solid-state
quantum devices based on superconductors [1–5] and lat-
eral quantum dots [6]. A key challenge to overcome in this
enterprise is the decoherence induced by the coupling to
the macroscopic bath of degrees of freedom not used for
quantum computation (see, e.g., Ref. [7] for a review).
Many of these decoherence sources can be engineered at
the origin. In the case of intrinsic slow noise originating
from two-level fluctuators (TLFs) this is much harder [8,9],
albeit not impossible [10,11]. In order to advance the
limitations of coherent quantum manipulations in the solid
state, it is imperative to find strategies which accommodate
this kind of noise. A number of methods have been pro-
posed by intuition and analogies to different areas, such as
dynamical decoupling [12,13], the optimum working point
strategy [1,5,14], and NMR-like approaches [15]. Even in
light of their success, it is by no means clear whether even
better strategies can be formulated and, on a more general
level, where the limits of quantum control under hostile
conditions are reached.

We resort to numerical methods of optimal control. The
closed systems GRAPE (gradient ascent pulse engineer-
ing) algorithm [16] has been proven useful in spin and
pseudospin systems [17], an important example of the
latter being coupled Josephson devices [18]. It was ex-
tended to open Markovian systems [19]. Other recent
optimal control results also include the presence of noise
and decoherence. Pure dephasing was considered in [20].
Reference [21] treated a semiclassical random-telegraph
noise (RTN) model in the high-temperature limit, while
[22] focussed on two qubits and classical 1=f noise.
Optimal state transfer in the spin-boson model was con-
sidered in [23]. Reference [24] optimized qubit gates in the
presence of finite-dimensional, dissipation-free environ-
ments. In this Letter, we generalize the GRAPE algorithm
to include a complex environment leading to non-
Markovian qubit dynamics and non-Gaussian noise. We

show that next to an optimal working point there is also an
optimal pulse shape and gate duration. Accelerating the
fluctuations can improve the gate fidelity. We discuss the
physics ultimately limiting the gate performance no longer
correctable by pulse shaping.
Model and method.—In macroscopic samples, 1=f noise

[8,9,25] occurs in most observables. The Dutta-Horn
model [26,27] explains this phenomenon by the (classical)
superposition of TLFs which randomly jump between
their states, a process known as random-telegraph noise
(RTN). In small, clean samples the discrete nature of the
noise process from a single dominating fluctuator [1,28]
can be resolved. This leads to semiphenomenological
Hamiltonians [29–31].
We specifically model a qubit coupled to a single TLF

by H ¼ HSðtÞ þHI þHB. HS consists of the qubit, de-
fined by the states j0i and j1i, and the coupled two-state
system, i.e.,

HSðtÞ ¼ E1ðtÞ�z þ ��x þ E2�z þ��z�z: (1)

The Pauli matrices �i and �i operate in qubit and fluctuator
Hilbert space, respectively. E1ðtÞ is time dependent and
serves as an external control, while � is the static qubit
tunnel splitting. E2 is the TLF splitting and � is the qubit-
TLF coupling strength. The source of decoherence is the
coupling of the fluctuator to the heat bath (described by
bosonic operators bi), which leads to incoherent transitions
between the fluctuator eigenstates,

HI ¼
X
i

�ið�þbi þ ��byi Þ; HB ¼ X
i

@!ib
y
i bi: (2)

The �� are TLF raising or lowering operators. We intro-
duce an Ohmic bath spectrum Jð!Þ ¼ P

i�
2
i �ð!�!iÞ ¼

�!�ð!�!cÞ containing the couplings �i, the dimen-
sionless damping �, and a high-frequency cutoff!c (which
we assume to be the largest frequency in the system).
The dynamics of the combined qubit � TLF system is

described by a master equation for the density matrix with
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the bath traced out along the lines of [7,32]. In the motional
narrowing regime kBT > �E2, one arrives at the Bloch-
Redfield equation

_�ðtÞ ¼ 1

i@
½HS; �ðtÞ� þ ½�þ;��

1 �ðtÞ� þ ½��;�þ
0 �ðtÞ�

� ½��; �ðtÞ�þ
1 � � ½�þ; �ðtÞ��

0 � (3)

with the different rate tensors (s ¼ 0, 1)

��
s ¼ 1

ði@Þ2
Z 1

0
dt0

Z 1

0
d!Jð!Þðnð!Þ þ sÞe�i!t0��ðt0Þ:

(4)

Here, nð!Þ is the Bose function. The rate tensors explicitly
depend on the control E1ðtÞ due to the interaction repre-
sentation of the operators �� in Eq. (4). Since tracing out
the TLF at this stage would lead to an intricate non-
Markovian master equation, we treat the qubit-TLF inter-
actions exactly; i.e., the rate tensors act on the combined
qubit-TLF system.

Our model goes far beyond a simple RTN noise model
[13] and captures the correlations between qubit and TLF
[29,31]. Still, it is useful to introduce the parameters of the
RTN which would result for � ! 0. The TLF flipping rate
is � ¼ 2�E2 cothðE2=kBTÞ, the sum of the excitation and
relaxation rate. It enters the two-point noise spectrum of
random-telegraph noise

Sð!Þ ¼
Z 1

�1
dte�i!th�zðtÞ�zð0Þieq ¼ �2 �

!2 þ �2
: (5)

This is the Fourier transform of the interaction representa-
tion of �z assuming the bath in equilibrium. In this limit,

one can find relaxation rates 1=T1 ¼ �2

E2 Sð2EÞ and 1=T2 ¼
1

2T1
þ E2

1

E2 Sð0Þ with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ E2

1

q
. In [5] it was shown that

pure dephasing can be suppressed by keeping jE1j � �
during all manipulations, the optimum working point strat-
egy. Moreover, in the slow flipping regime, 1=T1 relaxation
is small since Sð2�Þ ’ �2�=ð4�2Þ.

We formulate the control approach by rewriting Eq. (3)
as _�ðtÞ ¼ �ðiH ðE1ðtÞÞ þ �ðE1ðtÞÞÞ�ðtÞ with the Hamil-
tonian superoperator H ðE1ðtÞÞð�Þ ¼ 1

@
½HSðE1ðtÞÞ; �� and

the relaxation superoperator �, both time-dependent via
the control E1ðtÞ. The formal solution to the master equa-
tion is a linear quantum map operating on a physical initial
state according to �ðtÞ ¼ FðtÞ�ð0Þ. F itself follows the
operator equation of motion

_F ¼ �ðiH þ �ÞF (6)

with initial condition Fð0Þ ¼ 1, as in Ref. [19]. Here,
multiplication of quantum maps denotes their concatena-
tion. The task is to find control amplitudes E1ðtÞ with t 2
½0; tg�, tg being a fixed final time, such that the difference

�F ¼ FU � FðtgÞ between dissipative time evolution

FðtgÞ obeying Eq. (6) and a target unitary map FU is

minimized with respect to the Euclidean distance k�Fk22 �
trf�Fy�Fg. Maximizing the trace fidelity

� ¼ 1

D2
Re trfFy

UFðtgÞg (7)

is equivalent, where D is the dimension of the Hilbert
space. In an open system, one cannot expect to achieve
zero distance to a unitary evolution FU [19]. The goal is to
come as close as possible.
We find the pulses by a numerical gradient search. The

quantum map is digitized, FðtgÞ�FN ���Fj ���F1, where

the interval ½0; tg� is divided into N slices of duration �t.

One finds by Eq. (6) that Fj ¼ expð� iH ½E1ðjÞ��t�
�½E1ðjÞ��tÞ, with E1ðjÞ being the control ampli-
tude in the jth time slice. The gradient of the fidel-

ity can be computed in closed form as @�
@E1ðjÞ ¼

�Re tr
n
Fy
UFN � � �Fjþ1�t

@ðiH ðE1ðjÞÞþ�ðE1ðjÞÞÞ
@E1ðjÞ Fj � � �F1

o
.

We aim at optimizing the evolution of the qubit alone.
The TLF is traced out at the end of the full time evolution
FðtgÞ retaining all degrees of freedom in the intermediate

steps Fj. One obtains the reduced map

FRðtgÞ½�� ¼ trTLFfFðtgÞ½� � �
eq
TLF�g (8)

that only acts on the space of qubit density matrices.
Standard factorized initial conditions are assumed with
the TLF in equilibrium, �eq

TLF. We use �½FRðtgÞ� as fidelity
for optimization in the relevant qubit subspace.
Results and their discussion.—In the above model we

focus on optimizing controls for a Z-gate �z. This para-
digmatic case demonstrates the virtues of our technique:
(i) a gate error up to about 1 order of magnitude lower than
the current optimal working point strategies; (ii) the gate
error reaches the T1 limit of the relaxation model; (iii) the
optimized controls relate to optimal times via self-
refocusing effects—showing how open systems GRAPE-
derived controls provide physical insight in structured
relaxation models. Similar findings are to be expected
beyond single-qubit gates.
An overview of the accessible gate performance as

a function of the duration tg of the gate is given in

Fig. 1 (top). Excellent gate performance can be achieved
for pulse time tg * 	=�. This corresponds to the static

��x inducing at least a full loop around x. Indeed, for
the pulse at tg ¼ 3:375=� the evolution consists of a

quarter z-rotation, a full loop around x, and the second
quarter of the z rotation leading to the total half rotation
around z necessary for the Z gate; see the Bloch sphere in
Fig. 2 (left) for a particular initial state. At shorter times the
pulses cannot use the physical resource provided by the
internal evolution to refocus the qubit.
At longer times the attainable gate performance mildly

deteriorates, depending on the value of �. This indicates
that the optimal pulses are essentially limited by T1 pro-
cesses at the optimal working point. We compare the
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performance to 1� e�tg=T1 with T1 obtained at E1 ¼ 0.
The optimized pulses are able to beat this limit which
indicates that T1ðE1 ¼ 0Þ is a lower bound for the effective
T1; see Fig. 1 (middle panel). For clarity, we also compare

to 1=e�t=T2;min with T2;min ¼ 2T1.

Optimizing the qubit under decoherence can reduce the
error by roughly 1 order of magnitude over conventional
Rabi pulses, see Fig. 1 (bottom). The source of error of the
Rabi pulses can be seen as the fast-oscillating counter-
rotating component in the rotating frame, which is signifi-
cant for these short, high-amplitude pulses consisting only
of a few carrier periods. Only at certain times tn ’ n	=�,
n 	 1, Rabi pulses perform well. At these tn one has n
rotations around x due to the static field, refocusing the
qubit. Further optimization gives moderate results: in the
case n ¼ 2 the errors are ð1��ÞRabi ¼ 1:5
 10�3 and
ð1��ÞGRAPE ¼ 0:9
 10�3. At other times, the pulse op-
timization redirects the � drift to refocus the TLF field and

keeps the control at the optimal point E1 ¼ 0 as often as
possible. As a result, the narrow and deep minima of the
error for the regular Rabi pulse become shallow and broad
using GRAPE.
Figure 2 (right) shows the control fields E1 for a gate

time tg ¼ 5:0=� and the respective time evolution of the

entropy �Trf�q ln�qg, with �q the reduced qubit density

matrix. The remaining qubit entropy at tg is significantly

lower for the optimized pulse, but nonzero due to dis-
sipation with � ¼ 0:005. Steep rises and offsets of pulses
as in Fig. 2 can be smoothened by adding a penalty

function to the fidelity ~� ¼ �� Rtg
0 
ðtÞE2

1ðtÞdt. A simple

penalty kept constant for all iterations in the algorithm,


ðtÞ ¼ 
0ð2� tanhð tt0Þ þ tanhðtg�t

t0
ÞÞ, was sufficient; see

Fig. 2 (right). Here, the overall penalty and the character-
istic rise-time parameter are chosen to be 
0 ¼ 2:0=� and
t0 ¼ 0:02=�, respectively. Figure 1 (bottom) shows that
smooth pulses close to experimentally realistic settings
come at a modest price of 0:5=� in additional gate time.
After tg � 3:75=� the same gate errors as without the

penalty function are obtained. Possible fast-oscillating
components of the pulses could be eliminated by penalty
functions in frequency space, which is beyond the scope of
the present work.
We now analyze the dependence on the bath parameters.

In Fig. 3 one can identify a nonmonotonic dependence of
the error of the optimized pulse on �. At low �, one can
approximate ð1��Þ ¼ aþ b� (left inset). First, the lin-
ear growth with � accounts for the increasing probability
for the TLF to flip at a random time during the evolution.
This is reflected in the power spectrum of the RTN for low
�, where essentially Sð! � �Þ ’ �2�=!2, Eq. (5). For
time-independent E1 and very long evolution, T2 would be
dominated by Sð0Þ in the Markovian limit. However, at
very fast manipulations through an external field, the en-
vironment is only sampled at higher frequencies, 1=tg �
! � �. Second, it turns out that a ’ 0. This reflects that,
for a static TLF (� ¼ 0) the GRAPE pulse fully compen-

∆

∆

[ / ]

FIG. 2. Left: Rabi (dashed line) and optimized pulse (solid
line) close to the optimal time at tg ¼ 3:375=� and � ¼ 0:05.

Inset shows the evolution of initial state � ¼ jþihþj, j�i ¼
ðj0i � j1iÞ= ffiffiffi

2
p

on the Bloch sphere under these pulses. Right:
Comparison of pulse shape and qubit entropy between Rabi
(dashed line), optimized (solid line), and penalty-constrained
pulse (� � � ) at tg ¼ 5:0=� and � ¼ 0:005. E2 ¼ 0:1�, � ¼
0:1�, T ¼ 0:2� in all panels.

∆

κ
κ
κ
κ
κ
κ

κ

FIG. 1. Top: Gate error versus pulse time tg for optimal Z-gate
pulses in the presence of a non-Markovian environment with
dissipation strength �. A periodic sequence of minima at around
tn ¼ n	=� with n 	 1 is obtained. Middle: The gate error of
optimized pulses approaches a limit set by T1 and 2T1, as shown
with � ¼ 0:005. Bottom: Optimized pulses reduce the error rate
by approximately 1 order of magnitude compared to Rabi pulses
for � ¼ 0:005. Pulses starting from zero bias and with realistic
rise times (penalty) require only slightly longer gate times, also
for � ¼ 0:005. E2 ¼ 0:1�, � ¼ 0:1� and T ¼ 0:2� in all
panels.
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sates for the unknown initial state of the TLF. On the other
hand, for a high flipping rate �, the physics of motional
narrowing sets in. This limits the low frequency noise and
hence the decoherence to Sð! � �Þ ¼ �2=� which van-
ishes for � ! 1. Indeed, the high-� part of the error can be
fitted by a law cþ d=�. The finite limiting value c captures
the residual decoherence which occurs even though the
RTN model, Eq. (5), suggests absence of noise.

Consequently, there is a �max at which the error is
maximum. Remarkably, �max ’ 0:32� ’ �=	 indepen-
dent of any other parameters such as temperature and
pulse length: The attainable performance is worst if the
TLF flips once per free rotation around x. The maximal
error ð1��Þð�maxÞ as well as most other fit parame-
ters show a nonmonotonic temperature dependence; see
Fig. 3 (right inset). The maximal error is exponentially
suppressed at low T and saturates to a finite high-T limit.
The intermediate behavior can be related to the equilibrium
susceptibility of the TLF, which is maximum at kBT ’
2E2. The more responsive the TLF is to perturbations of
its z field, the stronger it will influence the qubit.

Conclusion.—We have investigated an important model
for decoherence in solid-state systems, a qubit coupled to a
two-level fluctuator which itself is coupled to a heat bath.
Our study is the first to exploit the explicit dynamics of a
complex non-Markovian environment in optimal control of
open systems for implementing quantum gates. For a wide
range of parameters, we have identified self-refocusing
effects, which are usually only visible at specific optimal
pulse durations but can now be achieved more robustly.
The pulses include offset and rise-time limitations of ex-
perimental settings. We have shown that both for fast and

slow flipping of the TLF high-fidelity control can be
achieved. The full qubit-fluctuator correlations turn out to
be a crucial ingredient. The generality of our method can
be harnessed for studies of multiqubit systems in the
presence of a non-Markovian environment, such as mul-
tiple fluctuators, for instance.
We gratefully acknowledge support by NSERC discov-

ery grants, by the EU in the projects EuroSQIP and QAP as
well as by the DFG through SFB 631.

*rebentr@fas.harvard.edu
†fwilhelm@iqc.ca

[1] P. Bertet et al., Phys. Rev. Lett. 95, 257002 (2005).
[2] O. Astafiev et al., Phys. Rev. B 69, 180507(R) (2004).
[3] R.W. Simmonds et al., Phys. Rev. Lett. 93, 077003

(2004).
[4] A. Wallraff et al., Nature (London) 431, 162 (2004).
[5] D. Vion et al., Science 296, 886 (2002).
[6] T. Hayashi et al., Phys. Rev. Lett. 91, 226804 (2003).
[7] J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031

(2008).
[8] S. Jung et al., Appl. Phys. Lett. 85, 768 (2004).
[9] A. B. Zorin et al., Phys. Rev. B 53, 13 682 (1996).
[10] J. Eroms et al., Appl. Phys. Lett. 89, 122516 (2006).
[11] M. Steffen et al., Phys. Rev. Lett. 97, 050502 (2006).
[12] L. Faoro and L. Viola, Phys. Rev. Lett. 92, 117905

(2004).
[13] H. Gutmann et al., Phys. Rev. A 71, 020302(R) (2005).
[14] G. Ithier et al., Phys. Rev. B 72, 134519 (2005).
[15] E. Collin et al., Phys. Rev. Lett. 93, 157005 (2004).
[16] N. Khaneja et al., J. Magn. Reson. 172, 296 (2005).
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FIG. 3. Gate error versus TLF rate � at various temperatures
for an optimized pulse with tg ¼ 5:0=�. The left inset is a mag-

nification of the low-� part of the main plot and reveals the linear
behavior. The right inset shows the maximum of the curves of
the main plot versus temperature. (E2 ¼ 0:1� and � ¼ 0:1�).
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