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Motivated by recent experiments showing that a variety of stiff biopolymer gels exhibit highly unusual

negative normal elastic stresses, we simulate networks of elastic rods over a wide range of concentrations

and bending stiffness. In all cases, we find that sheared networks develop significant negative normal

stresses that coincide with other elastic nonlinearities, including shear stiffening and compressive bucking.

The threshold strain for normal stress in these athermal networks increases with both concentration and

stiffness, in contrast with prior predictions for thermal networks. This may provide an experimental test

for entropic vs enthalpic effects in such networks.
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Networks of semiflexible polymers such as those that
make up the cytoskeleton of plant and animal cells have
been shown to have rich mechanical and rheological
properties. One of the hallmarks of their mechanics is a
highly nonlinear elastic response to stress and strain [1–6],
including dramatic stiffening under shear. A striking ex-
ample of such nonlinearity has been the recent demonstra-
tion in such systems of highly unusual negative normal
stresses—e.g., in which a sample will tend to contract
along an axis perpendicular to the direction of shear [7].
Normal stresses, in general, are a nonlinear phenomenon,
since their sign cannot depend on the direction of shear, for
symmetry reasons. But most materials tend to expand
when sheared, as has been known at least since the classic
experiments of Poynting 100 years ago [8], in which he
showed that elastic rods extend axially when twisted.
Another familiar example of this is the tendency of granu-
lar materials to dilate when sheared, as can be seen by the
fact that wet sand tends to dry out around our feet when we
walk on the beach. Few materials have been found to
develop negative normal stresses. Liquid crystalline poly-
mers [9], nanotubes [10], and emulsions [11] are examples
of such systems, which show rather weakly negative nor-
mal stresses in a range of applied shear rates. By contrast,
semiflexible polymer networks exhibit negative normal
stresses that can become comparable in magnitude to the
applied shear stress. Interestingly, this is observed in the
elastic response of such networks.

It was previously shown theoretically that thermal ef-
fects can lead to negative normal stress (NNS) effects due
to the asymmetric force-extension relation of semiflexible
polymers [7]. Simulations also recently showed large NNS
in an athermal network of elastic rods [12], suggesting that
purely mechanical effects can also lead to NNS. Here we
simulate networks of stiff rods over a wide range of net-
work concentration and polymer stiffness. We find that
such athermal networks very generally exhibit NNS that
can be comparable to or larger than the corresponding
shear stresses, depending on network structure and the

strain applied. Although both entropic and enthalpic net-
works can exhibit NNS, their predicted dependence on
both network density and filament stiffness are opposite,
providing a possible experimental way to distinguish the
importance of entropic vs enthalpic effects.
We construct model networks as follows. A number of

straight filaments of length L and random orientation are
deposited on a W �W square. Every time two filaments
cross, they are linked together by a free hinge. Filaments
that cross the upper or lower boundary are rigidly attached
to the boundary and dangling ends are removed, while
periodic boundary conditions are applied to the left and
right edges of the square. The deposition stops when the
desired concentration is reached. We characterize this con-
centration by the ratio L=‘c, where ‘c is the average
distance between cross-links along a filament. The network
is refined by adding midpoints between cross-links along
each filament. Using an energy functional depending on
both cross-links and midpoints, we implement a discrete
wormlike chain approximation for every filament. For any
consecutive pair of points, we consider the stretching
energy �H stretch as a function of the distance ‘ and the
initial distance ‘0 via a stretching stiffness �:

�H stretch ¼ �

2

�
�‘

‘0

�
2
‘0: (1)

The bending energy is evaluated for every pair of consecu-
tive segments along a filament:

�H bend ¼ �

2

�
��

‘0

�
2
‘0; (2)

where �� is the angular deflection of one segment relative
to the other, ‘0 is the average length of the two segments,
and � is the bending stiffness. The total energy is the sum
of these energies over the entire network. Network shear is
performed by displacing the upper boundary with respect
to the lower one, followed by a minimization of the elastic
energy over the unconstrained internal coordinates (cross-
links and midpoints) using a nonlinear conjugate gradient
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technique [13]. The resulting shear (normal) stresses are
then determined from the forces parallel (perpendicular) to
the displaced boundaries.

We simulated networks of size W ¼ 7 of filaments with
length L ¼ 1; 2 and different network densities in the range
L=‘c ¼ 9–60. The bending rigidity � is varied between
10�7 and 10�2 keeping a constant � ¼ 1. For an elastic

rod, ‘b ¼ ffiffiffiffiffiffiffiffiffiffi
�=�

p
is a length of order the rod diameter [14].

Thus, the lower limit of our parameter range corresponds to
a dimensionless ratio �=ð�L2Þ expected for protein bio-
polymers with ‘b � 5–10 nm and length L� 10 �m. Our
larger values of � correspond either to shorter filaments or
to thermal systems, where the effective modulus � is
greatly reduced by thermal fluctuations [15]. A typical
network with L=‘c ¼ 15 is shown in Fig. 1. Under a purely
affine shear, the filaments initially oriented near 45� to the
strain direction are stretched (indicated in red) and aligned,
while those oriented near 135� are compressed (blue) and
eventually buckle. At the filament scale, buckling occurs
on wavelengths shorter than L due to the connectivity
with the surrounding network through the cross-links, in
contrast to classical Euler buckling at the fundamental
mode [14].

In Fig. 2 are shown the normal and shear stresses�N and
�S, respectively, for a single network (L=‘c ¼ 13) in
response to an imposed strain � for various bending stiff-
nesses �. The shear response initially depends linearly on
strain and eventually stiffens weakly, while the normal
response is negative (the network wants to contract) and
depends initially quadratically on strain. For an ensemble-
averaged network with isotropically oriented filaments, the
normal response must, by symmetry, be an even function of
the shear deformation. Finite size effects, however, result
in a small violation of this for any specific network studied.
The shear stress increases with increasing �, while the
magnitude of the normal component exhibits the opposite
trend. This behavior is qualitatively consistent with the
previous suggestion that the normal stresses arise from
the asymmetry of the extensional response of single fila-
ments [7], since stiffer filaments are expected to bend less

[15,16] and the energy in Eq. (1) is symmetric. Increased
bending and eventual buckling lead to an increasingly
asymmetric extensional response, with softening under
compression [12].
In Fig. 3(a), we plot the shear modulus G ¼ �S=� and

differential shear modulus K ¼ d�S=d� normalized by

the affine linear modulus GAFF ¼ �
16

�
L ðL‘c þ 2 ‘c

L � 3Þ,
which corresponds to purely compression or extension
deformation without bending filaments [15]. This repre-
sents an upper bound for G and K at small strains, since
bending modes can only lower the energy for given bound-
ary conditions. For these small strains, a linear regime with
constant K ¼ G ¼ G0 is seen in all cases, while nonline-
arities such as stiffening and/or softening occur at higher
strains. The linear modulus G0 increases with both density
and bending stiffness in agreement with previous work
[15–17]. Specifically, G0 / � for floppy filaments, while
G0 saturates to GAFF for stiff filaments (inset) or high
densities.
In Fig. 4, we directly compare the shear and normal

stresses, by plotting �N vs �S, both of which have been
normalized by GAFF. For stiffer filaments we see an ap-
proximate quadratic dependence, which is to be expected
by symmetry: Since �N must be an even function of strain,
it is thus expected to have an initial quadratic dependence
for small strain, where �S is expected to be approximately
linear in strain. Interestingly, for more flexible filaments,
this quadratic regime, though present, shrinks and an ap-
proximately linear dependence (��N ’ �S � �) is ob-
served above a small threshold strain, where the two
stresses are of comparable magnitude. A regime with
comparable magnitude shear and normal stress was re-
ported for a simulated network in Ref. [12], but the ex-
pected small-strain regime with quadratic NNS
dependence was not apparent. The crossover we observe
from quadratic to linear NNS with strain is consistent with
what was found experimentally and theoretically in
Ref. [7]. This behavior can be understood in simple terms

FIG. 1 (color online). A portion of a typical network for � ’
0:16. Red indicates stretched segments, while blue indicates
compressed ones. Filaments oriented near 45� are stretched,
and those near 135� are compressed.
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FIG. 2. Raw shear (solid line) and normal (dashed line)
stresses vs strain for different bending stiffnesses.
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for highly asymmetric extensional response of filaments, in
which both �S and �N are dominated by the stretched
filaments oriented near 45� to the strain direction [7].
Our results suggest that the crossover from quadratic to
linear NNS behavior occurs for smaller strains with more
flexible filaments, which can be tested experimentally.

To test this more directly, we plot the ratio��N=�S vs �
in Fig. 5. Here we see that the small-strain regime, char-
acterized by �N � �2 and �N=�S � �, decreases with

increasing flexibility of filaments or decreasing network
concentration. Interestingly, this is opposite to the pre-
dicted behavior for thermally fluctuating networks in
Ref. [7]. Thus, the normal stresses may provide an experi-
mental signature for thermal vs nonthermal systems. We
also observe an apparent convergence of all networks for
increasing strain, to a regime in which the two stress
components are comparable. As the filaments become
softer to bending, we observe a peak, with normal stresses
exceeding shear stresses for small strains. Reference [7]
reported normal stress that exceeded the shear stress in
some cases. Subsequent experiments [18] find a peak
similar to that of Fig. 5.
As argued in Ref. [7], one possible origin of negative

normal stresses can be the asymmetric extensional re-
sponse or force-extension relation of the constituent fila-
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FIG. 3. In (a), (b), and (c), the differential shear modulus K
normalized by GAFF, the ratio of normal to shear stress, and the
buckling order parameter B, respectively, are all plotted vs shear
stress for constant density L=‘c ¼ 15 and for various bending
stiffnesses � ¼ 10�7 (c), � ¼ 10�6 (j), � ¼ 10�5 (w), � ¼
10�4 (r), and � ¼ 10�3 (d). In the inset of (a), the ratio
G0=GAFF is plotted vs the bending stiffness � for different
densities L=‘c ¼ 9 (d), 13 (c), 20 (j), and 40 (r). Here G0

grows linearly with � for soft filaments and saturates to GAFF for
stiff ones; G0=GAFF also increases with density. The insets in (b)
and (c) show data collapse for ��N=�S and B when plotted
against �S=�. In (d), B is plotted for constant � ¼ 10�5 and
various densities L=‘c ¼ 11 (w), L=‘c ¼ 13 (r), L=‘c ¼ 15
(d), L=‘c ¼ 20 (c), L=‘c ¼ 30 (m), L=‘c ¼ 40 (b), L=‘c ¼
50 (.), and L=‘c ¼ 60 ( � ). The inset in (d) shows the collapse
of these data when plotted against �S‘

3
c. Together with the insets

in (b) and (c), this shows that the onset of nonlinearity coincides
with the buckling transition.
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FIG. 5. The ratio of normal to shear stress vs applied strain �
for constant density L=‘c ¼ 15 and various filament bending
stiffnesses. On decreasing �, a peak grows, becoming more
pronounced and moving to smaller strain. For large strain, the
curves depend weakly on �, showing a regime dominated by
stretching only. The inset shows the same ratio ��N=�S for
constant stiffness � ¼ 10�5 and different densities.
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FIG. 4. Normal stress �N vs shear stress �S (both normalized
by GAFF) for density L=‘c ¼ 13 and various filament bending
stiffnesses. For stiff filaments, �N � �2 � �2

S over a large initial

stress region. For softer filaments, this region becomes smaller so
that on this linear scale it appears that �N � �S.
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ments. Even though the individual filaments in our model
are assumed to be Hookean springs, with a symmetric
force-extension curve, the fact that they can bend and
buckle effectively gives rise to a softer response to com-
pression and an asymmetric force-extension relation [12].
To test whether this can explain our results, we measure the
relative importance of buckling with an order parameter B

defined by dEC

d� = dETOT

d� . Here the numerator refers to the

incremental change in the elastic compression energy of
the filament segments under compression in the network
for a small-strain step d�, evaluated as a function of the
initial state of network strain �. The denominator refers to
the incremental change in total elastic energy. This is
normalized by its initial, small-strain value, where no
buckling is expected. Thus, this order parameter should
have an initial value of unity and should then decrease as
filaments begin to buckle because this relieves their com-
pression energy. We plot this in Fig. 3, along with both
K=GAFF and ��N=�S for several different networks
of the same density, but with differing bending stiffness.
We see that the onset of significant buckling, indeed,
coincides with the onset of nonlinearities in the rheology.
Furthermore, classical Euler buckling theory predicts that
the threshold force for buckling is proportional to �. By
plotting both B and ��N=�S vs �S=�, we see collapse of
the curves for various � (see insets), consistent with the
dominant role of buckling in controlling the development
of large normal stresses. In Fig. 3(d), we plot B for various
L=‘c, and we see that the curves collapse (inset) by plot-
ting against �S‘

3
c, confirming that the buckling order pa-

rameter actually accounts for the collective buckling of
inter-cross-link segments [19].

Here we have calculated the component of stress in the
shear gradient direction that, as discussed in Ref. [7], is
appropriate for normal stress measurements in the elastic
limit of low frequency, where the network is expected to be
compressible. The NNS in semiflexible networks can be
qualitatively understood in terms of the nonlinear and
asymmetric force-extension relation, which can result ei-
ther from thermal effects [7,20] or from Euler buckling of
the filaments under compression [12,17]. This can explain,
in part, the apparent generality of NNS reported for a
number of different stiff biopolymer systems [7], which
should span thermal and athermal systems. Furthermore,
our results suggest a possible way to distinguish experi-
mentally between alternative thermal [2,3,20] vs athermal
[12,17] origins of nonlinear elasticity in biopolymer net-
works: We find that the characteristic strain for the onset of
negative normal stress increases with network concentra-
tion and filament stiffness, both of which are in contrast
with the prediction for thermal networks [7]. Although we
have focused on isotropic networks, anisotropy can also

occur in vivo or can result from sample preparation in vitro.
In general, anisotropy is expected to result in shear (nor-
mal) stresses that are no longer (anti)symmetric in strain,
meaning that both positive and negative normal stress can
be expected. Thus, normal stress measurements may pro-
vide a good experimental test for isotropy.
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