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We demonstrate that by utilizing an overscreened Josephson junction as a noise detector it is possible to

achieve the threshold regime, whereby the tails of the fluctuating current distribution are measured. This

situation is realized by placing the Josephson junction and mesoscopic conductor in an external circuit

with very low impedance. In the underdamped limit, overscreening the junction inhibits the energy

diffusion in the junction, effectively creating a tunable activation barrier to the dissipative state. As a

result, the activation rate is qualitatively different from the Arrhenius form.
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In the course of scientific progress, it is desirable to use
recent advances of physical understanding to develop new
experimental techniques that will in turn give impetus for
further advances. This description is apt for the current
state of electron counting statistics in mesoscopic physics,
and the aim of the current Letter. Recent experiments in
electron counting statistics have measured the asymmetry
of the current distribution [1,2] and the effect of the mea-
surement circuit [1,3]. Subsequent researchers have taken
several independent approaches to exploring this physics.
If the system is transferring electrons on sufficiently long
time scales, it is possible to directly count individual
electrons [4], look at various higher current cumulants
[5], and even examine the conceptually new area of condi-
tional counting statistics [6]. It is also possible to focus on
the frequency dependence of the cumulants [7,8]. A further
exciting possibility is to measure the tails of the current
fluctuation distribution via a threshold detector [9,10].

A natural threshold detector is a Josephson junction (JJ):
by measuring the rate of switching out of the metastable
supercurrent state into the running dissipative state, infor-
mation about the statistical properties of the noise driving
the system may be extracted. This system has been the
subject of recent experiments [11–13]. However, it was
noticed that a single JJ typically works near the Gaussian
point [9] (a regime that has been well studied in the past;
see, e.g., [14,15]), so much so that the third current cumu-
lant makes only a small correction to the escape rate [16–
18]. This is because the slow semiclassical dynamics of the
JJ averages out the Markovian noise source and becomes
effectively Gaussian under typical conditions. The purpose
of this Letter is to show that despite this difficulty, the
threshold regime is realizable for a single underdamped JJ.
The threshold regime goes beyond the third cumulant and
realizes the full potential of the Josephson detector, where
the escape to the running state of the JJ is driven by the tails
of the distribution, rather than by relatively small devia-
tions from the average.

Circuit effects are known to be important for electron
counting statistics. The measurement circuit can lead to

cascade corrections [19,20] to higher current cumulants,
masking the system contribution. A similar effect has been
predicted by the authors to occur in JJ detectors [17]. The
central idea of this Letter is to have a very small load
resistance, resulting in an overscreened junction, while still
maintaining the underdamped state (see inset of Fig. 1).
The advantage is that not only cascade corrections are
suppressed, but also the relative contribution of the third
cumulant is enhanced compared to the Gaussian contribu-
tion [17], assisting in the measurement of the third cumu-
lant in recent experiments [12,13]. We will demonstrate
that this is the case not just for the third cumulant, but that
all higher cumulants are also enhanced, leading to non-
perturbative activation by rare events.
Josephson detection circuit.—The circuit in the inset of

Fig. 1 shows the essential part of the detector composed of

FIG. 1 (color online). The negative logarithm of the escape
rate is plotted versus dimensionless barrier height �U=EC for
various values of the threshold parameter P . The solid lines
correspond to Poissonian noise, while the dashed line corre-
sponds to a QPC with transparency T ¼ 0:06. Inset: Simplified
electrical circuit for the Josephson junction (JJ, marked with an
X) threshold detector of the noisy mesoscopic system.

PRL 102, 086806 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 FEBRUARY 2009

0031-9007=09=102(8)=086806(4) 086806-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.086806


the JJ with Josephson energy EJ, and the capacitor C. The
fluctuations in the circuit originate from the combination of
the current IL through the macroscopic load resistor and by
the mesoscopic system current IS, which is to be measured.
According to Kirchhoff’s law, the total current IS þ IL is
equal to the sum of the Josephson current I� ¼ ðEJ=�0Þ�
sin�, where �0 ¼ @=2e, and the displacement current
IC ¼ C _V. This leads to the equation of motion for the
superconducting phase �,

C�2
0
€�þ EJ sin� ¼ �0ðIS þ ILÞ; (1)

where we used the relation V ¼ �0
_�.

We consider an Ohmic system and load resistor, so that
hISi ¼ JS �GSV and hILi ¼ JL �GLV, whereGS,GL are
the system and load conductances, and the constant cur-
rents JS ¼ GSVS, JL ¼ GLVL are tunable parameters that
will be shown to control the activation threshold. Equation
(1) can be rewritten as a set of Hamiltonian-Langevin
equations for the phase variable � and canonically con-
jugated momentum p ¼ �0Q (where Q ¼ CV is the total
charge on the capacitor),

_� ¼ p=m; _p ¼ �@U=@�þ�0�I; (2)

with ‘‘mass’’ m ¼ �2
0C, and where �I ¼ IS � JS þ IL �

JL is the dissipative part of the system and load current.
Equation (2) describes the motion of a ‘‘particle’’ in the
tilted periodic potential

Uð�Þ ¼ �EJ½cos�þ J��; (3)

stimulated by the dissipative part of the system and load
current, where J ¼ �0ðJS þ JLÞ=EJ is the dimensionless
total current bias. Dissipation leads to relaxation of the JJ
into one of its metastable supercurrent states, where the
phase is localized in one of the potential wells so that
hVi ¼ 0. In the dissipative state, the phase drifts along
the bias which generates a nonzero voltage drop V.

Weak damping threshold limit.—Here the phase oscil-

lates with the plasma frequency !pl ¼ �Jð1� J 2Þ1=4,
where �J ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
EJ=m

p
. The energy relaxes slowly with rate

ðGS þGLÞ=C < !pl to the local potential minimum. We

further assume the separation of time scales,
maxfeVS; Tg> @!pl, so that the noise source IS is

Markovian. According to our previous results [17], the
escape rate � (predicted to exponential accuracy) is

log� ¼ ���1
0

Z
�dE; hH ð� _�ÞiE ¼ 0: (4)

Here, the function H ðzÞ, which we refer to as a
Hamiltonian, generates the cumulants (irreducible mo-
ments) of �I in Eq. (2), so that @nzH jz¼0 ¼ hh�Inii. The
function �ðEÞ is the escape trajectory in the extended
energy phase space, or the ‘‘instanton line.’’ The notation
h. . .iE ¼ ð1=TpÞH dtð. . .Þ denotes time averaging over a

physical trajectory in the ðq; pÞ phase space at a certain
energy E, with TpðEÞ being the period of the quasiperiodic

motion at that energy. See Ref. [17] for a detailed
derivation.
We note that after replacing the node voltage V with

�0
_�, the first two coefficients in the expansion of H are

(i) h�Ii¼�ðGSþGLÞ�0
_� and (ii) hh�I2ii ¼ 2GLTþ

hhI2Sii. We now focus on the limit of small load resistance,

GL � GS, so circuit backaction can be neglected [17]. In
this case, the load controls coefficient (i). However, we
observe that for a large system voltage, the system
shot noise will dominate the load resistor noise in
coefficient (ii) if eVS > GLT=GS. The circuit load, being
a macroscopic resistor, has no higher current cumulants,

so the Hamiltonian takes the form hH ð� _�ÞiE ¼
�GL�0�h _�2iE þ JShFð� _�ÞiE, where F generates the
generalized Fano factors of the system,

FðzÞ ¼ X1
n¼2

zn

n!

hhInSii
hISi : (5)

The instanton equation (4) may be brought to dimen-
sionless form

EC�

@

hFð� _�ÞiE
hð� _�Þ2iE

¼ P � eGL

4CJS
; (6)

where EC ¼ e2=2C is the capacitor’s charging energy, and
we define the threshold parameter P , which is the ratio of
the JJ energy relaxation rate GL=C to the mesoscopic
system’s excitation rate JS=e. If relaxation is weak, P �
1, then Eqs. (5) and (6) may be truncated at the first
(Gaussian) term, giving the escape rate (4) as

log�G ¼ ��U

Teff

; (7)

where Teff ¼ hhI2Sii=2GL is an effective noise temperature,

so the Arrhenius form is recovered in agreement with [17].
However, if the relaxation rate dominates the excitation
rate so P � 1, then we enter the threshold regime where
the solution to (6) is nonperturbative in the cumulant
expansion.
The physical reason for this is that while the Gaussian

contribution to the system noise cannot compensate for the
fast energy relaxation, rare current events (where many
electrons are sequentially transmitted in a short amount of
time) may be able to excite the JJ strongly enough to
overcome damping. The power of these current kicks is

proportional to the velocity _�, and therefore creates posi-
tive feedback for rare-event activation in the weak damping
regime, because the velocity continues to grow as the
particle gradually ascends the potential well to the escape
point.
By introducing the JJ quality factor Q ¼ !plC=GL > 1

and the separation of time scales parameter R ¼
eVS=@!pl > 1 we reformulate the condition for the thresh-

old regime as P ¼ ð1=QRÞðe2=4@GSÞ> 1; therefore,
GS < e2=@. This implies that the system is a tunnel junc-
tion, which is known to create Poissonian noise (however,
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see the discussion below). The circuit backaction can be

neglected if eVS > eV ¼ e�0
_�� ffiffiffiffiffiffiffiffiffiffi

ECE
p

. We will show
below that E� EC at the threshold, so eVS=EC ¼
QRð@GL=e

2Þ> 1. Together with P > 1 this gives the
overscreening condition GL >GS.

Poissonian noise.—In order to illustrate the threshold
behavior, we consider a simple harmonic potentialUð�Þ ¼
ð1=2Þm!2

pl�
2 with a sharp cutoff at � ¼ �0. In this sim-

plified model �ðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=EJ

p
cosð!pltÞ. The averages in

Eq. (6) over the periodic orbit at constant energy may now
be done exactly. The Poissonian noise generator is FðzÞ ¼
ez � z� 1. Using the integral representation of the modi-
fied Bessel function of order 0, I0ðzÞ ¼ ð1=2�Þ�R

2�
0 d� expð�z sin�Þ, we find Eq. (6) simplifies to

I0ðzÞ � 1

z
¼ 2P

ffiffiffiffiffiffi
E

EC

s
; z � �

ffiffiffiffiffiffi
2E

m

s
: (8)

This equation is numerically solved for � and integrated
over the energy E. The result for the logarithm of the
escape rate is plotted in Fig. 1 as a function of �U for
different values of P .

For P � 1, the Bessel function may be expanded as
I0ðzÞ ¼ 1þ z2=4þ � � � , which gives � ¼ 2@P=EC. When
� is substituted into (4), the result (7) is recovered, because
for Poissonian noise hhI2Sii ¼ GSVS. In the opposite limit,

P � 1, the right-hand side of Eq. (8) is large, and we

utilize the asymptotic form of the Bessel function, I0ðzÞ !
ez=

ffiffiffiffiffiffiffiffiffi
2�z

p
for z large. Thus the variable z must be only a

logarithmically growing solution of Eq. (8): z ¼ LHðEÞ �
logð2P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�E=EC

p Þ, up to the double-logarithmic correc-

tion. This gives � ¼ LHðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2E

p
, so the escape rate (4)

of activation due to Poissonian noise may be approximated
by

log�P ¼ �
ffiffiffiffiffiffiffiffi
�U

EC

s
log

�
2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��U

EC

s �
: (9)

The dominant square-root behavior is clearly seen in
Fig. 1, and is a sign of the break down of Gaussian noise
activation.

For the escape to be achievable, we require that �U is
not much larger than EC. More rigorously, for strong bias

the action scales as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U=EC

p � ð1� J Þ3=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=EC

p
. The

total number of states in the quantum well, Ntot �
�U=@!pl, also scales down as Ntot � ð1� J Þ5=4 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=EC

p
, but must be large in the semiclassical limit.

Therefore, we estimate � log�P � Ntot logP=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� J st

p
.

In Refs. [12,13] this number varies from 10 to 17. This
indicates that it may be hard but nevertheless feasible to
observe the threshold behavior.

Anharmonic correction.—Here we show that a realistic
potentialUð�Þ leads to only a small anharmonic correction
to the escape rate plotted in Fig. 1. In the case of a general
potential, the instanton line Eq. (6) may be found by noting

that for Poissonian noise the integral in hFð� _�ÞiE in the
threshold regime is exponentially dominated by the largest

value of _�. Energy conservation, ðm=2Þ _�2 þUð�Þ ¼ E,
indicates that this will be near the bottom of the potential,
where the potential is approximately harmonic with fre-
quency !pl. Therefore, the previous Bessel function result

will hold to excellent approximation. The other average,

h _�2iE, is generalized by noting that by using dt ¼ d�=j _�j
and conservation of energy, the equation @E½TpðEÞ�
h _�2iE� ¼ TpðEÞ=m holds. This equation may be integrated

to find h _�2iE ¼ 2�@NðEÞ=mTpðEÞ, where NðEÞ ¼
ð1=2�@ÞRE

0 dE
0TpðE0Þ is the number of quantum states in

the cavity below the energy E.

Combining results for hFiE and h _�2iE and going to the
asymptotic threshold regime, we conclude that the instan-

ton solution takes the previously found form � ¼ LðEÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2E

p
with the logarithm replaced by LðEÞ ¼ LHðEÞ �

log½AðEÞ�, where the function

AðEÞ ¼ TpE

2�@N
¼ E@E logN (10)

characterizes the anharmonicity. It takes the value A ¼ 1 at
the bottom of the potential well and diverges logarithmi-
cally at the top of the barrier as A� log½�U=ð�U� EÞ�.
Thus this factor may compensate the large parameter P in

close vicinity of the barrier top,�U� E� �Ue�P , so the
Gaussian noise there dominates. However, the overall an-
harmonic contribution to the large logarithm LðEÞ is rela-
tively small and can be neglected.
Stabilization effects.—In what follows we wish to illus-

trate an important fact: statistics of rare current fluctuations
carries complementary information about a Markovian
process which is not contained in any finite current cumu-
lant. As a first example, we consider the shot noise from a
quantum point contact (QPC), which is known to be a
binomial process. The noise Fano factors are generated
by FðzÞ ¼ ð1=T Þ log½1þT ðez � 1Þ� � z, where T is
the transmission of the QPC. The cumulants are obtained
by the expansion (5) at z ¼ 0. Therefore, in the tunneling
regime, T � 1, the logarithm can be expanded to lowest
order in T so the noise of the QPC is Poissonian, FðzÞ ¼
ez � z� 1, as in the example considered above. However,
our results indicate that the Poissonian process can always
provide a strong enough current fluctuation for the JJ to
escape from the metastable state with some small proba-
bility. This is not the case for a QPC in the tunneling
regime, as we demonstrate below.
Indeed, the rare current events of the QPC are deter-

mined by the asymptotic of FðzÞ at large z:

FðzÞ þ z ¼ 1

T
�

�
zþ logT ; z ! þ1;
logð1�T Þ; z ! �1:

(11)

This result implies that with a small probability T M the
current acquires its maximum value Jmax ¼ JS=T ¼
e2VS=�@, so that all M ¼ eVS�t=�@ electrons arriving
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at the QPC during time interval �t are transmitted.
Similarly, with the probability ð1�T ÞM all the electrons
are reflected giving zero current [21]. If �U exceeds some
critical value, the maximum or minimum current fluctua-
tion creates insufficient bias for the JJ to escape from the
supercurrent state [9]. We named this phenomenon the
Pauli stabilization effect because it originates from the
Pauli principle of electron occupation [10].

To estimate the value of the bias, J st, and escape rate,
�st, at the stabilization point, we average F in (11) over
the energy-conserving trajectories, which yields hFiE ¼
ð1=T Þf���=Tp þ ð1=2Þ log½T ð1�T Þ�g, where �� is

the distance between the two turning points at energy E.
The denominator of (6) is the same as before, so the
instanton line is given by

�stðEÞ ¼
aTp

��� bN
; (12)

with the coefficients a ¼ �ð1=2Þ log½T ð1�T Þ� and b ¼
16�PT . Integration of this instanton line leads to singular
behavior when �� ¼ 16�PTN. Evaluated at E ¼ �U
this equality determines the stabilization point J st below
which the rate � vanishes. We find this point by assuming
the strong bias limit 1� J � 1 in (3) giving a cubic
potential: U=EJ ¼ ð1� J Þ���3=6. Skipping a number
of steps, we present the result:

ð1� J stÞ3=4 ¼ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=EJ

p
32� 21=4PT

: (13)

Next, we note that at the critical point J ¼ J st the
integral (4) with � ¼ �stðEÞ from Eq. (12) is convergent
because �stðEÞ has only an inverse square-root divergence
at E ¼ �U. Therefore, log�st can be estimated by drop-
ping the least singular term, bN, in the denominator of
�stðEÞ and replacing the potential with the harmonic ap-
proximation U ¼ ð1=2Þm!2

pl�
2. Straightforward evalu-

ation then gives log�st �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U=EC

p
log½T ð1�T Þ�. At

strong bias �U� ð1� J stÞ3=2EJ, and using the result
(13) we find the escape rate right before stabilization:

log�st � log½T ð1�T Þ�
PT

: (14)

We estimate (14) in terms of the quality factor Q> 1 and
the separation of time scales parameterR> 1 as log�st �
QR log½T ð1�T Þ�. Alternatively, using the total number
of statesNtot > 1 in the quantumwell, and Eq. (13), we find
that log�st � Ntot log½T ð1�T Þ�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� J st

p
, which agrees

with the previous estimate for Poissonian noise. To com-
pare with the Poissonian case, the escape rate for a QPC
with the transmission T ¼ 0:06 is plotted in Fig. 1 in the
case of the simple harmonic potential with a sharp cutoff.
The sharp potential leads to a logarithmic divergence at the
stabilization point�U=EC ¼ 6:86, in contrast with the rate
discontinuity discussed above for a smooth potential.

Our second example is the telegraph process: The sys-
tem current switches randomly from the value I1 to the
value I2 and back with the rate �1 and �2, respectively. We
have found in Ref. [22] that the cumulant generator of the
telegraph process is given by the formula

HSðzÞ ¼ �Iz� ��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�Iz���Þ2=4þ �1�2

q
; (15)

where �I ¼ I2 � I1, �� ¼ �2 � �1, �I ¼ ðI1 þ I2Þ=2, and
�� ¼ ð�1 þ �2Þ=2. In the case of slow switching, �1; �2 �
I1; I2, the noise becomes super-Poissonian with the current
distributed between I1 and I2. The sharp cutoff of the
distribution function at these values results in the stabiliza-
tion effect. The asymptotic form H S ¼ �Iz� ��þ j�Iz�
��j=2 at jzj ! 1 leads to the result (12) with the new
coefficients a ¼ ��=�I and b ¼ 8�GLEC=e�I. Therefore,
at the stabilization point the results (13) and (14) hold after
the replacement PT ! GLEC=2e�I and log½T ð1�
T Þ� ! �2 ��=�I. With the new separation of time scales
requirement, R0 ¼ ��=!pl > 1, the action at the stabiliza-

tion point can be estimated as � log�st �QR0, so the
telegraph stabilization effect should also be observable.
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