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We propose a procedure to accurately describe the structural parameters of an incommensurate phase

using ab initio methods by approximating it with a set of analogous commensurate supercells. We apply

this approach to obtain the structural parameters of the Sc-II phase, which has recently been identified as a

complex incommensurate structure similar to Sr-V. The calculated incommensurate ratio �, lattice

parameters, and Wyckoff positions of Sc-II are in excellent agreement with the available experimental

data. Our results show that � increases with pressure up to 60 GPa approaching but never reaching the

commensurate value 4=3. Hence calculations do not confirm the prediction made based on the reanalyzing

of experimental data. When pressure exceeds 70 GPa, � shows a sharp decrease that might be considered

as the precursor of a new structural phase transition.
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The high-pressure Sc-II phase was first observed in the
study of the superconducting properties of Sc under pres-
sure [1], where high-pressure resistivity measurements
revealed the presence of resistance anomalies at around
17 GPa, accompanied by the onset of superconductivity
and a progressive increase of the transition temperature
under pressure. Later, energy-dispersive x-ray diffraction
experiments showed that at 20 GPa Sc undergoes a struc-
tural phase transition [2]; however, the exact structure of
this high-pressure phase remained a puzzle for more than
two decades. None of the known crystal structures could fit
the x-ray diffraction pattern of Sc-II [2–4]. Neither Sc
followed the high-pressure transformation sequence hcp !
�Sm ! dhcp ! fcc predicted by canonical band-theory
calculations for the rear-earth elements [5] and experimen-
tally confirmed for Y and La [6]. Only with the recent
advance in high-pressure characterization techniques,
which led to the discovery of many new complex phases
for the elements of the periodic table at high pressure [7–
11], has the structure of Sc-II been identified as being built
of two interpenetrating substructures with the incommen-
surate (IC) periods of translation along the c axis [12,13].
Initially, the complex Sc-II phase was resolved within the
superspace group I04=mcmð00�Þ and described as a com-
posite structure comprising IC body-centered tetragonal
(bct) host and guest cells [12]. The Sc-II phase was found
to be stable from 22 up to 104 GPa [14] with � ¼ c1=c2
(1—host, 2—guest) increasing with pressure in the inter-
val: 1:5< �< 1:6 [12]. This solution, however, turned out
to give too short guest-guest distances along the chains,
and a new IC composite crystal structure, composed of a
bct host and C-face-centered tetragonal (C fct) guest lat-

tices, has been proposed for the Sc-II phase [13]. This new
solution describes the Sc-II phase by the superspace group
I4=mcmð00�Þ with � ¼ 1:2804 at 23 GPa. The earlier
ab initio calculations of two commensurate analogous
supercells modeling I04=mcmð00�Þ and I4=mcmð00�Þ
structures [15] have shown that the solution suggested by
McMahon et al. [13] is the stable structure of Sc above
20 GPa. Thus, Sc-II is found to be isostructural with Sr-V
[superspace group I4=mcmð00�Þ], although its structural
parameters are closer to those of Bi-III and Sb-II [super-
space group I04=mcmð00�Þ]. It also comes out that if the
pressure dependence of � for the I04=mcmð00�Þ solution is
adjusted to I4=mcmð00�Þ, � should increase with pressure
in the interval: 1:28< �< 1:36 [13], therefore passing
through the commensurate value of 4=3 at 72 GPa. This
makes the Sc-II phase unique in the sense that it gives one
an opportunity to directly perform electronic structure
calculations for a complex composite phase.
Generally, the lack of periodicity makes the direct ap-

plication of first-principle methods to IC structures prob-
lematic. Usually, a complex structure is approximated by a
periodic analogue and the ab initio calculations are per-
formed for that approximant. In principle, one can approxi-
mate an IC structure with a very large supercell, whose
commensurate ratio approaches the IC one. However, this
approach has a few drawbacks: (i) It might not be feasible
to calculate a sufficient large periodic structure, and
(ii) one is entirely at the mercy of available experimental
data when modeling such a structure. Needless to say, such
an approach lacks any predictive power. In the case of
Sc-II, we have also a question of whether the IC structure
becomes commensurate at a certain pressure. In fact, stan-
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dard ab initio techniques are able to some degree to answer
this question. One can approximate the IC structure with a
set of commensurate analogues with commensurate ratios
about �. First-principles calculations are able to discrimi-
nate the structure with the lowest total energy; thus, already
at this stage one can check the experimental prediction.
Furthermore, within the framework of the density func-
tional theory (DFT), the total energy is a function of
structural parameters and must have a minimum for the
set of parameters corresponding to the ground state struc-
ture. In the case of 1D IC systems [16], the total energy is a
continuous function of the c1=c2 ratio and therefore can be
expanded about the minimum corresponding to the true IC
ratio � of the complex phase.

In this Letter, we propose a procedure enabling one to
obtain the total energy of an IC structure and to determine
its structural parameters using ab initio techniques for
periodic solids. We calculate the dependence of � on the
applied pressure and show that it is qualitatively different
from the one predicted from experimental data. Up to
about 60 GPa, � increases with pressure, in agreement
with experimental observations, but then it starts decreas-
ing again down to the values comparable to those observed
at low pressure, where Sc-II phase is metastable. The
decrease of � with pressure above 60 GPa is accompanied
by changes in the band structure that might signify a
structural instability of the Sc-II phase.

The calculations were performed in the framework of
DFT using the VASP program [17,18], a robust and highly
efficient implementation of the projector augmented-wave
(PAW) method [19]. To describe the electronic structure of
different Sc phases, we used the Sc PAW potential with
3s23p63d14s2 valence orbitals, and both the local density
approximation (LDA) [20] and the generalized-gradient
approximation (GGA) [21,22] of the exchange-correlation
functional were applied to treat the electronic exchange
and correlation effects. Although both LDA and GGA
calculations give qualitatively similar results, GGA agrees
quantitatively better with the available experimental
data, and in what follows we present the results of our
GGA-PW91 calculations. For total energy calculations
and relaxation, we used the Methfessel-Paxton smearing
method. The structures were relaxed until the Hellman-

Feynman forces became less than 10�3 eV= �A. The num-
ber of k points and plane waves used in the calcula-
tions ensured the total energy convergence to be
0:2–0:3 meV=atom.

In order to accurately calculate the dependence of struc-
tural parameters of an IC phase on applied pressure, we
performed a series of calculations at different volumes
within the pressure interval 0–100 GPa by approximating
the complex structure with a set of periodic supercells built
of n1 host cells and n2 guest cells, with commensurate
c1=c2 ¼ n2=n1 ratios of about 1.28. The host lattice is bct
described by the symmetry group I4=mcm with atoms at

Wyckoff position 8hðx; xþ 1=2; 0Þ, and the guest lattice is
C fct with atoms at ð0; 0; 0Þ and ð1=2; 1=2; 0Þ. We chose the
following set of values for n2=n1: 6=5, 5=4, 14=11, 4=3,
10=7, and 3=2, which yielded two kinds of structures as far
as symmetry was concerned. In the case of even n2 and odd
n1 the bct cells (I4=mcm) were generated, and in the
opposite case of odd n2 and even n1 simple tetragonal
cells, described by space group P4=mbm, were built.
Then, at each volume, we relaxed all of the analogue
structures. We expected that atoms would move away
from the superstructure positions in order to mimic the
distribution of the IC phase to the degree maximal possible
under the constraint of the periodic supercell. Indeed, after
the relaxation the host atoms are not described by just one
Wyckoff parameter x at different Wyckoff sites [for ex-
ample, 8hðx; xþ 1=2; 0Þ and 16lðx; xþ 1=2; zÞ for the 4=3
supercell] but by a set of slightly different Wyckoff pa-
rameters fxig and fzig, corresponding to different atomic
sites.
The total energies of the calculated commensurate struc-

tures are shown in Fig. 1(a). One can see that in the
considered pressure range the 4=3 analogue structure
does not appear to be most energetically favorable.
Although the structures 14=11 and 4=3 are competing
within the pressure interval (40–70 GPa), the energy of
the 4=3 analogue lies 2 meV=atom above that of the 14=11
supercell, larger than the accuracy of our calculations.
When pressure exceeds 70 GPa, we observe a dramatic
increase of the energy difference between the 14=11 and
4=3 analogues. Further, at the highest calculated pressure
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FIG. 1 (color online). (a) Total energies of various commen-
surate analogues with respect to the energy of the commensurate
supercell with c1=c2 ¼ 4=3 as a function of volume/atom.
(b) Total energy as a function of c1=c2 (solid line) obtained by
a fourth-order polynomial fitting of ab initio data (symbols) at
the two volumes (energy curve for volume=atom ¼ 15 �A3 is
shifted down by 0.7 eV). (c) Calculated � as a function of
volume/atom for two different approximations (LDA and
GGA) of the exchange-correlation functional. The experimental
point is taken from [13].
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(V ¼ 12 �A3), the energy difference between the 5=4 and
14=11 analogues becomes comparable to the accuracy of
the calculations; therefore, these structures become degen-
erate in energy that might indicate a possibility of a new
structural phase transition.

In Fig. 1(b), the dependence of energy on the ratio c1=c2
is shown for two chosen volumes. We fitted the calculated
values with a fourth-order polynomial, and by finding the
minimum of E ¼ Eðc1=c2Þ we estimated � and the corre-
sponding total energy E ¼ Eð�Þ of the IC phase. From the
obtained E ¼ EðVÞ function, the pressure PðVÞ ¼
�@EðVÞ=@V and enthalpy HðPÞ were calculated. To esti-
mate the internal parameter x of the Wyckoff position 8h,
we first calculated the average value of x for each com-
mensurate analogue at each volume, and then the depen-
dence of �x on c1=c2 was fitted polynomially. Lattice
parameters a and c as the functions of pressure were
estimated in a similar way (the lattice parameter c of the
IC structure is equal to the lattice parameter of the host
component c1). The derived values for lattice parameters,
�, and the Wyckoff parameter of Sc-II at different pres-
sures are summarized in Table I. The calculated depen-
dence �ðVÞ is also given in Fig. 1(c) for two different
exchange-correlation functionals. One can see that �
does not pass through the commensurate value 4=3 in the
stability region of the Sc-II phase. This discrepancy be-
tween experimental and theoretical predictions prompts a
more careful reexamination of the x-ray spectrum of Sc-II
above 50 GPa.

At this point, wewould like to emphasize the importance
of structural relaxation, that is, the optimization of the
supercell shape and atomic positions, for obtaining accu-
rate and correct structural parameters. The fact that the
Sc-II phase is superconducting with a relatively high Tc is
an indicator of rather strong electron-phonon coupling.
Very recently, it has been suggested that there is no true
distinction between a charge density wave (CDW) and a
structural phase transition, in particular, an IC lattice tran-
sition [23]. It has been shown that the topology of the
Fermi surface, which is the characteristic of the metal

electronic subsystem, plays a secondary role in the forma-
tion of the CDW, and, actually, the strong electron-phonon
interaction, which is certainly affected by the electronic
structure, is the main driving force of a CDW instability
[23]. Therefore, structural relaxation is a key step in the
calculations of a complex structure taking into account the
interaction between electrons and ions resulting in charge
distribution ultimately approaching that of the ground state
complex structure.
To see the effect of relaxation, we have built a new set of

periodic analogues with the structural parameters given in
Table I and calculated their total energies at different
volumes without structure optimization. The overall pic-
ture obtained in these calculations is similar to that shown
in Fig. 1(a), but the energies of analogue structures are
shifted upwards with respect to the 4=3 analogue (not
shown). Thus, the 4=3 commensurate supercell appears
to be energetically most favorable among the unrelaxed
structures between 40 and 100 GPa. In Fig. 2(a), the energy
of relaxation, defined as the difference between the total
energy of the optimized structure and the unrelaxed one, is
shown as a function of volume. Notice that the relaxation
energies are larger than the total energy differences be-
tween competing approximants and they are different for
different analogues. Moreover, the 14=11 analogue, ap-
pearing as most preferable according to the total energy
[Fig. 1(a)], does not have the lowest relaxation energy. This
indicates that relaxation energy, though very important, is
not totally decisive for the stabilization of the 14=11 ana-
logue. The analysis of the band energy contribution to the
total energy, which is essentially a sum over occupied one-
electron states, and the remaining terms, the most signifi-
cant part of which is the electrostatic energy, also shows

TABLE I. Calculated values of pressure, lattice parameters, �,
and Wyckoff parameter for the Sc-II I4=mcmð00�Þ phase.
V=atom ð �A3Þ P (GPa) a ð �AÞ c ð �AÞ � x

12.00 104.64 6.3408 3.1325 1.2476 0.1505

13.00 84.84 6.6355 3.1100 1.2665 0.1511

14.00 67.98 6.9097 3.1037 1.2922 0.1511

15.00 53.82 7.0772 3.1718 1.2953 0.1507

16.00 42.13 7.2124 3.2566 1.2937 0.1504

18.00 25.31 7.4787 3.4000 1.2823 0.1499

20.00 13.83 7.7498 3.6187 1.2697 0.1496

22.00 5.82 7.7988 3.7231 1.2620 0.1493

[13] 23 7.5672 3.4398 1.2804 0.1490

This work 23 7.5235 3.4201 1.2801 0.1498
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FIG. 2 (color online). (a) Energy of relaxation for a set of
competing analogue structures as a function of volume/atom.
(b) Total energy E0 as a function of c1=c2 (solid line) obtained
by a fourth-order polynomial fitting of ab initio data (symbols)
for unrelaxed and relaxed supercells (left Y axis) and energy of
relaxation ERLX at the volume=atom ¼ 16 �A3 (right Y axis).
Arrows point to the minimum of the Eðc1=c2Þ curves.
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that none of these terms alone can explain the stabilization
of the 14=11 structure. Therefore, the 14=11 analogue is
favored neither by the ionic charge redistribution during
the relaxation nor by the electronic charge redistribution in
a relaxed structure alone but by the combination of both
terms due to electron-phonon interaction. We stress again
that a careful structural relaxation stands out as an abso-
lutely vital procedure enabling us to correctly estimate
structural parameters of complex structures. To illustrate
this point even further, we show the total energy versus the
c1=c2 ratio for the unrelaxed and relaxed structures to-
gether with the relaxation energy for the chosen volume

(V ¼ 16 �A3) [Fig. 2(b)]. The relaxation energy contribu-
tion shifts the minimum of the Eðc1=c2Þ curve that results
in a more accurate determination of �.

Finally, we have calculated the enthalpy of the Sc-II
phase in order to estimate the hcp to Sc-II transition
pressure. In Fig. 3, the enthalpies of different Sc phases
with respect to that of hcp are shown versus pressure. In
addition to the experimentally observed hcp and Sc-II
phases, we also considered the �Sm, dhcp, and fcc phases.
According to our calculations, at T ¼ 0 K the transition
from hcp to Sc-II phase occurs at 17.8 GPa that is in
excellent agreement with low-temperature data by Wittig
et al. [1]. The transition is accompanied by the volume
change of 1.5% that is in very good agreement with the
data by McMahon et al. [13]. However, the most surprising
result is that the enthalpy of the �Sm structure is compet-
ing with those of hcp and Sc-II at the transition point and,
actually, all three phases appear to coexist in the vicinity of
17.8 GPa. It indicates a complex mechanism of the tran-

sition and calls for more theoretical and experimental work
to explore its nature.
Calculations were performed using the facilities of the
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