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A unitary Fermi gas has a surprisingly rich spectrum of large amplitude modes of the pairing field

alone, which defies a description within a formalism involving only a reduced set of degrees of freedom,

such as quantum hydrodynamics or a Landau-Ginzburg-like description. These modes are very slow, with

oscillation frequencies well below the pairing gap, which makes their damping through quasiparticle

excitations quite ineffective. In atomic traps these modes couple naturally with the density oscillations,

and the corresponding oscillations of the atomic cloud are an example of a new type of collective mode in

superfluid Fermi systems. They have lower frequencies than the compressional collective hydrodynamic

oscillations, have a nonspherical momentum distribution, and could be excited by a quick time variation of

the scattering length.
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While it is natural to expect the presence of hydrody-
namic collective modes in a unitary gas [1], the existence
of collective oscillations of large amplitude nonlinear
modes comes largely as a surprise. One reason is that these
solitonlike modes do not emerge from a simplified quan-
tum hydrodynamic or Landau-Ginzburg-like description of
these systems. The quest for reducing the quantum descrip-
tion of a complex many-body system of particles to a
relatively small number of degrees of freedom is one of
the ongoing efforts in all physics subfields. In chemistry
one would like to have an accurate description of complex
molecules with many atoms and many more electrons in
terms of a few wisely chosen relevant degrees of freedom
(rotations, vibrations, bond stretching, shape, etc.). In nu-
clear physics major research programs are based on the
assumption that many phenomena can be described by
limiting the number of relevant degrees of freedom to
nuclear shape and pairing only. Other examples are the
Landau-Ginzburg description of superconductors in terms
of a Schrödinger-like description for a condensate ampli-
tude, or the effective action formalism in quantum field
theory which aims at a description of the dynamics in terms
of fewer degrees of freedom. Most of the time it is not
evident a priori that such an approach is viable, proposed
derivations are sometimes misleading, and many ap-
proaches rely on intuition and phenomenological argu-
ments. It is particularly important to find examples of
physical systems where simplified descriptions are valid
and the limits of these descriptions clear. Equally impor-
tant are examples that show unsuspected failures of such
approaches. We have chosen to investigate pairing dynam-
ics in a fermion system, as this is relevant to a number of
different problems: nuclear collective dynamics and nu-
clear fission, in particular, neutron stars, the dynamics of
dilute Fermi gases in the unitary regime, quantum hydro-
dynamics of superfluids in general, effective action de-
scription of various strongly interacting Fermi systems

from quarks to nuclei to cold gases, and the sometimes
invoked relation to a Landau-Ginzburg description of such
systems.
At first we will concentrate our attention on a uniform

unitary Fermi gas for a number of reasons: (1) the proper-
ties of both homogeneous and inhomogeneous systems are
rather well known from ab initio calculations [2,3]; (2) the
properties of the unitary Fermi gas are very close to the
properties of dilute neutron matter, which can be found in
the crust of neutron stars [4]; (3) a very accurate descrip-
tion of both homogeneous and inhomogeneous systems is
available within a density functional theory (DFT) ex-
tended to describe superfluid systems [5]; (4) the Fermi
gas in the unitary regime is under intense experimental
scrutiny for a number of years now, see Refs. [1]; (5) a wide
spectrum of theoretical approaches of varying sophistica-
tion and accuracy have been applied and/or developed for
this system, see recent review [6]; (6) the weak-coupling
limit has been studied extensively within both mean-field
approximation and exact treatments [7–10]; (7) the experi-
mental study of the aspects of the pairing dynamics dis-
cussed here appears to be feasible in the unitary regime,
see, for example, a somewhat related experiment [11]. The
unitary regime is unlike the weak-coupling regime studied
in Refs. [7–10], where no one has yet suggested a practical
experimental realization and verification. Subsequently,
we will discuss the case of a nonuniform unitary Fermi
gas, where pairing gap and number density oscillations
couple.
To set the stage, let us review various possible frame-

works in which one can study the dynamics of a fermionic
superfluid. The oldest approach is quantum hydrodynamics
[6], which can be derived from conservation laws:

_nþ r � ½vn� ¼ 0; (1a)

m _vþ r
�
mv2

2
þ�½n� þ Vext

�
¼ 0; (1b)
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where we dropped the arguments (r, t). Above nðr; tÞ is the
number density, vðr; tÞ / rSðr; tÞ is the velocity field de-
termined by the gradient of the phase of the condensate,
�½nðr; tÞ� is the chemical potential, and Vextðr; tÞ is the
external field in which the system might reside. One can
derive these equations also if one assumes that the magni-
tude of the condensate remains constant and only its phase
Sðr; tÞ can vary. Alternatively, various authors use descrip-
tions based on a Landau-Ginzburg inspired formalisms
[12,13], when the dynamical degrees of freedom are re-
lated to the ‘‘condensate wave function’’ �ðr; tÞ. In par-
ticular these equations describe the Goldstone modes
arising from the broken Uð1Þ-symmetry in the condensed
phase. This wave function is related to the expectation
value of the two-fermion field operators �ðr; tÞ /
hc "ðr; tÞc #ðr; tÞi, for which one ends up with a

Schrödinger-like equation

i@ _�ðr; tÞ ¼ � @
2r2

4m
�ðr; tÞ þUðj�ðr; tÞjÞ�ðr; tÞ

þ Vextðr; tÞ�ðr; tÞ: (2)

Here 2m is the mass of the Cooper pair andUðj�ðr; tÞjÞ is a
Mexican hatlike potential with a minimum at the ground
state condensate value j�0j. One can envision two kinds of
small amplitude oscillations in these type of models:
(1) modes along the valley of the potential, when only
the phase of the condensate � changes, which correspond
to the expected Goldstone modes of the broken
Uð1Þ symmetry; (2) radial Higgs-like excitation modes,
when the magnitude of the ‘‘condensate wave function’’
� varies. One can derive either of these descriptions as a
small amplitude limit of the time-dependent Hartree-Fock-
Bogoliubov (HFB) or Bogoliubov–de Gennes (BdG) equa-
tions [14].

The HFB/BdG equations can be regarded also as an
approximation to the appropriate time-dependent DFT
description of such systems, namely, the time-dependent
superfluid local density approximation (TD-SLDA), which
will be used here. Wewill show that TD-SLDA allows for a
large number of very slow excitation modes, which are
absent in either a quantum hydrodynamic, described by
Eqs. (1) or a Landau-Ginzburg description of these systems
given by Eq. (2).

The (unregularized) SLDA energy density functional
has been introduced and discussed in Refs. [5] (see these
references for the description of the renormalization pro-
cedure required to eliminate the ultraviolet divergences of
the unrenormalized theory and @ ¼ m ¼ 1):

E ðr; tÞ ¼ �
�

2
þ �

3ð3�2Þ2=3n5=3
10

þ �
j�j2
n1=3

; (3)

where �, �, and � are dimensionless parameters and
nðr; tÞ, �ðr; tÞ and �ðr; tÞ are the number, kinetic and
anomalous densities, respectively, expressed through the
usual Bogoliubov quasiparticle wave function amplitudes
½ukðr; tÞ; vkðr; tÞ�, with k labeling the quasiparticle states.

The new element in this Letter is the nontrivial time de-
pendence of all the quasiparticle wave functions, which
formally amounts to replacing the eigenvalues with
time derivatives Ek ! i@t in the HFB/BdG equations.
The time-dependent density functional theory is viewed
in general as a reformulation of the exact quantum me-
chanical time evolution of a many-body system when only
single-particle properties are considered [15]. After pre-
paring the system in its ground state, we introduce a
time dependence of � [which controls the magnitude of
the pairing field �ðr; tÞ] on a specific schedule. We slowly
reduce � in magnitude to a value �s during a time interval
t0 � 1="F, after which we rather abruptly bring it back to
its value at unitarity in a time interval �t � 0:005="F �
1="F, see Fig. 1 and Refs. [7,8], where n ¼ k3F=ð3�2Þ and
"F ¼ k2F=2.
This scenario could be realized experimentally by con-

trolling the scattering length with the magnetic field as a
function of time, see Ref. [11]. Since by changing the
coupling constant alone one does not induce density var-
iations, one might argue that the time dependence of the
mean field does not play any role in the dynamics of the
pairing field. At unitarity one has a qualitatively different
scenario, since both the mean field and the pairing field are
of the same order of magnitude, and the mean field U
depends strongly on the value of the pairing field, see
Refs. [5],

Uðr; tÞ ¼ �½3�2nðr; tÞ�2=3
2

� j�ðr; tÞj2
3�n2=3ðr; tÞ : (4)

We will study a range of phenomena for which the number
density nðr; tÞ is constant in space and time, while �ðr; tÞ
will be constant in space only, and this fact alone will lead
to changes in Uðr; tÞ. In principle all couplings in Eq. (3)
change with the scattering length as in the experiment [11],
but since only � changes drastically from the BCS limit
(kFjaj � 1) to unitarity (1=kFa ¼ 0), we neglect the
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FIG. 1. Panels (a)–(c) display response of the homogeneous
system to an initial switching time interval t0"F ¼ 160, 10, and
160 and values of the gap corresponding to �s are �s=� ¼ 0:005,
0.005 and 0.5, respectively, where � is the coupling constant in
Eq. (3) and �0 � 0:5"F is the gap equilibrium value, both at
unitarity.
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changes in� and� for now (but reinstate them in a trapped
system), which leads only to minor quantitative changes.
One should remember that under these changes of the
coupling constant(s) the number density remains constant,
and after bringing � back to its value at unitarity the total
energy of the system is also conserved. Only during the
time intervals t0 and �t does one changes the energy of
the system. One can excite a large variety of oscillations,
and some examples of the collective modes we excite
in this manner are shown in Fig. 1. These modes qualita-
tively resemble those observed in the weak coupling re-
gime [7–10].

In Fig. 2(a) and 2(b) we show the instantaneous single-
particle occupation probabilities for the mode shown in
Fig. 1(a), at times when the pairing field is at its smallest
and its largest values, respectively, in the oscillatory re-
gime. While the occupation probabilities are essentially
identical with their equilibrium values when the pairing
gap is almost vanishing, the corresponding distribution at
the times when the pairing field reaches its maximum value
is drastically different from its equilibrium distribution.
Even though the occupation probabilities are so different
from their equilibrium values, the corresponding pairing
field is hardly different in magnitude from its equilibrium
value. The most surprising feature is the fact that the
pairing field oscillates around mean values different from
the minimum of the ‘‘effective potential’’ Uðj�ðr; tÞjÞ in
Eq. (2), namely �0 � 0:50"F [2]. One would naively ex-
pect that a simpler Landau-Ginzburg-like description as
used in Refs. [12,13], would perhaps be appropriate.

An interpretation of these modes, even in the small
amplitude limit, as being a radial-like oscillation of the
pairing field in a Mexican hatlike potential is equally

invalid. In the weak-coupling limit this was demonstrated
by Volkov and Kogan [16], who have shown that the
oscillations of the pairing field couple with excited quasi-
particles with energies above 2�1, see also Refs. [8,10],

and that leads for large times to �ðtÞ ¼ �1 þ
A sinð2�1tþ	Þ= ffiffiffiffiffiffiffiffiffi

�1t
p

. Even though the TD-SLDA
equations have a more complex structure, the dynamics
of these modes is very similar in our case, see Fig. 1(c).
The modes displayed in Figs. 1(a) and 1(b) are truly

nonlinear and their frequency depends strongly on the
oscillation amplitude, see Figs. 2(c) and 2(d). These are
at the same time very slow modes, with frequencies well
below the pairing gap�H < 2�0, but at the same time they
are truly large amplitude collective modes, not only be-
cause of the size of the oscillation amplitude, but also
because their excitation energy is equally large. In this
respect these modes are somewhat similar to the very large
amplitude oceanic waves, which take a long time to dis-
sipate into heat. The results of the MIT experiment [11]
suggest that the damping of these modes, due to the decay
into other modes, is much smaller than one might naively
expect at unitarity.
Since it would be rather difficult to study a unitary

homogeneous system experimentally, we have considered
the effects one might observe instead in a trapped system.
Upon the change of the scattering length the size of a cloud
and its central density change and this will induce both
number density and pairing gap oscillations. We have
considered a semirealistic case, which we could simulate
using our present computer resources, a homogeneous
system in yz-spatial dimensions (LkF � 131), which is
trapped only in the third dimension in a harmonic potential
well VðrÞ ¼ !2x2=2 (!="F � 0:0683 and N ¼ 20 000
particles). The initial state is that of a very weakly inter-
acting Fermi gas in this potential well and at time t ¼ 0we
bring quickly the scattering length to its unitary value and
keep it constant for the rest of the time evolution of the
system. Since the equilibrium radius of a weakly interact-
ing Fermi gas exceeds that of a unitary gas, the system
tends to shrink initially and density oscillations of the
cloud are thus excited in the x direction. This is unlike
the homogeneous case discussed above, where only oscil-
lations of the pairing field were induced. Figure 3 demon-
strates a rather complex cloud dynamics. The dynamics of
the pairing field is very similar. The rms cloud size in the
x direction is described rather accurately as simple damped
harmonic oscillations

XðtÞ ¼
ffiffiffiffiffiffiffiffi
hx2i

q
ðtÞ ¼ x0 þ x1 expð�
HtÞ cosð�HtÞ; (5)

with �H=! ¼ 1:74 and 
H=! ¼ 0:082 for the case illus-
trated here and similar ratios for other cases studied by us.
The frequency of this mode is consistently lower than that
of the quantum hydrodynamic frequency obtained in the
small amplitude limit from Eqs. (1) for a unitary gas,

namely �QHD=! ¼ 4=
ffiffiffi
3

p � 2:31. In this respect this is
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FIG. 2 (color online). Panels (a),(b) display the instantaneous
occupation probabilities of the mode shown in upper panel of
Fig. 1 corresponding to times t > 0 when the pairing field is at its
minimum and maximum values, respectively, with circles joined
by a solid (blue with circles) line. With (red) dots we plotted the
equilibrium occupation probabilities corresponding to the same
instantaneous values of the pairing gap. In panels (c),(d) we
show the maximum and minimum values of the oscillating
pairing field and the corresponding excitation energy as a func-
tion of the frequency of the Higgs-like modes, see Figs. 1(a) and
1(b).
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similar to the behavior of the Higgs-like modes in homo-
geneous systems. The detailed dynamics is rather compli-
cated and one can identify rather easily running waves, the
interference of which leads to ‘‘Landau’’ damping, with

H / vF=X (X is the system Thomas-Fermi radius). This
is similar to waves on a surface of a water pool, when
multiple reflections from walls lead to a very choppy
surface, before the wave energy is converted into heat.
This damping mechanism is different from that discussed
in Ref. [17] (partially already included in the present
approach) and likely a more efficient one as well in traps.
We estimated the speed of these running waves vH=vF to
be within 10% of the ground state value of the speed of

sound c=fF ¼ ffiffiffiffiffiffiffiffi
�=3

p � 0:37, where � is the Bertsch pa-
rameter [2]. These waves propagate with essentially con-
stant speed, even though the local density or Fermi velocity
changes quite dramatically across the cloud. Upon crossing
two waves propagating in opposite directions seem to
retain their original form (a solitonlike property), in spite
of significant nonlinearities. A remarkable feature of this
new type of excitation mode of Fermi systems is the
intrinsic nonsphericity of the Fermi surface (resembling
Landau’s zero-sound for normal systems), a feature absent
for the hydrodynamic modes or the collective modes in
homogeneous systems described above within TD-SLDA.
Note that in finite systems the equilibrium local momen-
tum distribution is elongated along the density gradient
[18], thus hk2y þ k2z � 2k2xi< 0 initially.

In summary, we have discussed the large amplitude
pairing field dynamics in both homogeneous and inhomo-
geneous unitary Fermi systems and have demonstrated the
existence collective modes with frequencies lower than the
hydrodynamic ones, and which in traps have a nonspher-
ical oscillating momentum distribution.
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FIG. 3 (color online). The color bar shows the correspondence
between various values of the ratio nðx; tÞ=nð0; 0Þ and the colors
used to represent them. Here nð0; 0Þ ¼ k3F=ð3�2Þ and "F ¼
k2F=2. The solid black line shows the corresponding rms cloud
radius, see Eq. (5). The dashed black line shows the quadrupole
moment of the momentum distribution P20 ¼ 20hk2y þ k2z �
2k2xi=ðNk2FÞ (scaled to fit in figure).
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