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We investigate the propagation of a dark beam in a defocusing medium in the strong nonlinear regime.

We observe for the first time a shock fan filled with noninteracting one-dimensional gray solitons that

emanates from a gradient catastrophe developing around a null of the optical intensity. This scenario turns

out to be very robust, persisting also when the material nonlocal response averages the nonlinearity over

dimensions much larger than the emerging soliton filaments.
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Introduction.—In many physical systems propagation
phenomena are affected primarily by the interplay of dis-
persive and nonlinear effects. In this context, solitons (or
solitary waves), i.e., wave-packets that stem from a mutual
balance between the two effects, account successfully for
several phenomena ranging from long-span nonspreading
propagation and elastic interactions of beams, to the co-
herent behavior of ensembles of particles, e.g., ultracold
atoms, or coupled oscillators. Studies in this field were
mainly focused on individual solitons or interactions be-
tween them. However, several solitons can emerge at once
from the breaking of large amplitude smooth waves [1], as
for instance observed in oceanography [2]. While theoreti-
cal studies indicate the phenomenon to be generic [3,4], the
observation of such a multisoliton regime in reproducible
lab experiments has been elusive.

In this Letter, we report a lab experiment in optics which
demonstrates that a fan of noncolliding 1D solitons
emerges, owing to a gradient catastrophe (i.e., an infinite
gradient developing from a smooth input) developing
around a zero of the field. Specifically we consider a
darklike optical beam (i.e., a dark stripe on a bright back-
ground) and operate, unlike previous experiments on dark
solitons [5], in a regime where nonlinearity outweighs
diffraction (i.e., power of the background largely exceed-
ing that needed to trap a fundamental dark soliton). In this
regime, we are able to monitor directly the evolution along
a thermal defocusing medium. We observe the formation
of a dark focus point which corresponds to a gradient
catastrophe of the hydrodynamic type around a point of
vanishing intensity. The infinite gradient of the hydrody-
namic stage is regularized by the presence of weak diffrac-
tion, which causes the appearance of fast oscillations in an
expanding region (fan), a feature common to the wide class
of so-called collisionless or dispersive shock waves
(DSWs) or undular bores, investigated theoretically in
several contexts [6–15].

In our setting, the DSW is essentially composed by 1D
dark soliton filaments, which become manifest after the

catastrophe point, and maintain fixed parameters (ve-
locity and darkness) as soon as they emerge [15], also
not exhibiting the rapid decay into vortices observed for
atom density shock waves in superfluids [16]. Our sce-
nario turns out to be remarkably robust against the non-
local character of the nonlinearity, and also presents
significant differences with DSWs resulting from bright
disturbances [17–20]. In the latter case the catastrophe
occurs, indeed, at finite transverse extension, giving rise,
in ð1þ 1ÞD, to two symmetric fans (connected by a
quasiflat background) [17,19], while the relative os-
cillations change dynamically (i.e., dark solitons in the
train always have slowly-varying parameters upon
propagation).
Experiment.—Our sample consists of a BK7 glass cell

of dimensions 1 cm� 4 cm� 1 cm in the X, Y, and Z
(propagation) direction, respectively, containing a solution
(concentration C ¼ 0:055 mmol=dm3) of rhodhamine-B
in methanol. A beam at �0 ¼ 532 nm from a diode-
pumped cw Nd-Vanadate laser was focused down to a
strongly elliptical beam (ellipticity 1:30) by means of a
cylindrical lens of focal length Lf ¼ 100 mm and a 20X

microscope objective. The beam is coupled in the cell at
Z ¼ 0 lying in the cell midplane (sufficiently far from
bottom, top, and lateral liquid-glass interfaces to avoid
the dynamics to be significantly affected by boundary
conditions). A phase mask is placed on the beam path
resulting in an abrupt change of � in the optical phase
across the line X ¼ 0. Beyond the mask we let the beam
diffract shortly and then we focus it onto the sample,
producing an input background bright beam of dimension
600� 20 �m, onto which a dark stripe (with zero intensity
in X ¼ 0 and hyperbolic-tangent-like X profile) is nested.
The stripe is parallel to the narrower spot size (Y direction),
while along X the dark notch of 25 �m FWHM sees a
quasiconstant background due to the 600 �m width. We
detect no significant changes along Y over the propagation
lengths involved, witnessing that our arrangement mimics
a strict ð1þ 1ÞD (X-Z) setting.
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The power coupled into the sample is measured by
means of a beam splitter in front of the laser output and a
silicon detector. As sketched in Fig. 1 a microscope and a
charge coupled device (CCD) camera allows us to collect
the light scattered in the vertical (Y) direction above the
cell, so as to produce a direct planar image of the relevant
beam evolution (X-Z plane). In Fig. 2 we show the field
intensity distribution collected in this way at different input
powers Pin.

At low power (4 mW) the dark notch diffracts, broad-
ening in propagation toward positive Z, whereas at higher
power the nonlinear thermal response of the sample coun-
teracts the diffraction leading to exact counterbalance
(dark soliton formation, Pin ’ 80 mW), and subsequent
overall focusing. By further increasing the power to Pin ¼
260 mW [Fig. 2(c)] and Pin ¼ 600 mW [Fig. 2(d)], the
dark notch undergoes to a clear focus point (gradient
catastrophe or breaking point). Beyond such point, the

beam undergoes nontrivial breaking forming a DSW con-
stituted by narrow dark soliton filaments which progres-
sively fill a characteristic fan. The number of dark
filaments in the fan grows with power. This is also clear
from the measured far field relative to the output of our cell
(i.e., after Z ¼ 1 cm of propagation) displayed in Fig. 3.
Importantly, these data clearly show that the filaments,
once seen in the transverse plane, maintain the stripe
features of the input (similarly to the bright case [19]),
not exhibiting any transverse instability or decay into
vortices characteristic of other superfluidity and optical
experiments [5,16,21], allowing for a description in terms
of pure ð1þ 1ÞD (X-Z) dynamics.
Theory.—The dynamics observed experimentally can be

studied and understood on the basis of the following gen-
eralized nonlinear Schrödinger (NLS) model
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where the first equation stands for the paraxial nonlinear
wave equation for c � A=
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A ¼ AðZ; XÞ normalized to peak intensity I0 (in the experi-
ment I0 ¼ Pin=Ae, where Ae is the background beam area).
The transverse and longitudinal coordinates x, z ¼ X=w0,
Z=L are scaled to the waist of the input dark notch w0, and
the geometric mean L � ffiffiffiffiffiffiffiffiffiffiffiffi

LnlLd

p
between the length scales

Lnl ¼ ðk0jn2jI0Þ�1 and Ld ¼ kw2
0 characteristic of the non-

linear and diffractive terms, respectively (n2 is the Kerr
coefficient that characterizes an index change of the local
type�n ¼ n2jAj2), and� ¼ �0L is the normalized attenu-
ation constant. Such scaling allows us to highlight the fact
that we operate in the weakly dispersive case, where the
model mimics the quantum Schrödinger equation with the

smallness parameter " � Lnl=L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lnl=Ld

p
playing the

role of Planck constant. The normalized refractive index
change �n ¼ k0Lnl�n acts as a self-induced potential
driven by the normalized intensity profile jc ðxÞj2. The
free parameter �2 measures the diffusion length and gives
the degree of nonlocality of the nonlinear response. This
model describes the nonlocal features of the nonlinear
response with sufficient accuracy regardless of their physi-
cal origin. Specifically, the model can be used to describe

FIG. 1. Sketch of the experimental setup.

FIG. 2 (color online). Transverse distribution of the intensity
along the cell (x-z plane), as observed from top scattered light for
four different input powers. Superimposed light curves (yellow
or light gray) are retrieved intensity profiles at Z ¼ 0:6 mm,
while in (d) the right dark (blue or dark gray) curve is relative to
Z ¼ 2:25 mm. The diffraction fringes aside the central dark
notch are due to the focusing system before the sample and
reflect the slight convex wave front of the bright background.
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FIG. 3 (color online). Far-field intensity distribution in the X-Y
transverse plane at the sample output for different input powers:
the intensity is collected after about 1 m of free-air propagation.
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thermal nonlinearity [20], while it allows for a reduction to
the integrable semiclassical NLS equation in the local and
lossless limit �2 ¼ � ¼ 0.

The essential physics can be explained indeed by the
latter limit, for which the outcome of numerical computa-
tions based on Eqs. (1) and (2) with input c 0ðxÞ ¼ tanhðxÞ,
are displayed in Fig. 4 for two different values of "
(powers). The initially dominant nonlinearity allows us to
adopt a description in terms of hydrodynamical variables �
and u � @xS. This is made by applying the WKB trans-

formation c ðx; zÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx; zÞp

exp½iSðx; zÞ="� [3,7–9,18],
which allows to reduce Eqs. (1) and (2), at lowest order
in ", to the following system written in the form of hyper-
bolic conservation laws
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where qðz; xÞ � �ðz; xÞuðz; xÞ. Equation (3), that rules clas-
sical 1D dynamics of an isentropic gas or shallow water (u
being, in this case the velocity of the gas or water, and � the
gas density or the water level), predicts that the dynamics
of the input hole in the density �ðx; 0Þ ¼ jc 0j2 produces a
gradient of ‘‘velocity’’ u, whose sign (u turns out to be
positive for x < 0, and vice versa) is such to give rise to
compressional waves. Equivalently, due to the defocusing
nature of the medium the central dark region has a higher
index which draws light inwards. As a result the input dark
notch experiences a dramatic steepening and focusing
around its null, which in turn enforces the velocity gra-
dient, until eventually a singularity (gradient catastrophe)
develops at a finite distance, consistently with the hyper-
bolic nature of Eq. (3). Such singularity is characterized by

the crossing of characteristics associated with Eq. (3) and
becomes manifest as a vertical front in the variable u and a
cusp in the intensity �, as displayed in Fig. 4(d) (numerical
results from Eq. (3) are exactly coincident to those shown).
However, when such high (virtually infinite) gradients
develop, the hydrodynamic description breaks down, and
diffraction regularizes the front through the appearance of
an expanding region of fast oscillations, i.e., a shock fan.
The shock fan is progressively filled with noninteracting
dark filaments, whose angle (transverse velocity) increases
as the relative darkness decreases, which is a universal
feature of dark (gray) solitons [5]. Furthermore the number
of filaments (solitons) increases for smaller " (higher
powers). In particular, for 1=� ¼ N, N integer, the asymp-
totic state is composed solely by 2N � 1 gray solitons [15].
In other words, the solitons which are embedded in the
input become manifest at sufficiently large distance,
though this occurs in a nontrivial way through a critical
behavior characterized by a cooperative initial stage which
results in the catastrophe focus point. Our experiment
provides evidence that nonlocality and losses do not quali-
tatively affect this scenario, a fact ultimately related to the
persistence of solitons in the presence of terms that break
the integrability. We recall that, in our system, the losses
and nonlocality are intimately related because the index
change is due to heating caused by the strong absorption of
the dye, while the nonlocality arises from the intrinsic
tendency of heat to diffuse [20]. As shown in Fig. 5, where
we report simulations based on Eqs. (1) and (2) with �2 ¼
1, the overall dynamics is quite similar to the local one,
except for a slight adiabatic broadening of the solitons. The
post-catastrophe breaking still occurs in the form of narrow
soliton filaments, which the model [Eqs. (1) and (2)] sup-
ports also in the nonlocal case [22]. This occurs despite the
fact that the induced potential �n that traps them becomes,
owing to diffusion, a smooth function [see Fig. 5(b), red
solid curve) that no longer follows the deep oscillations of
the intensity as in the local case. Simulations in transverse
2D with elliptical input reminiscent of the experiment
confirm the validity of this 1D picture, allowing us to

FIG. 4 (color online). Numerical simulations of Eqs. (1) and
(2) with � ¼ � ¼ 0 and c 0 ¼ tanhðxÞ: (a),(c) Level plots of
jc j2 for " ¼ 0:05 (a) and " ¼ 0:02 (c); (b) snapshot of case (a)
at z ¼ 4; (d) snapshot of case (c) at the catastrophe point z ¼
0:75: frequency u (solid red (medium gray) curve and intensity
(black solid curve) compared with the input (blue dashed curve).

FIG. 5 (color online). Evolution in the nonlocal and lossy case:
(a) Level plot of intensity (the color scale is adapted to com-
pensate for losses); (b) snapshots at z ¼ 7, of intensity (black
solid curve) and relative index change �n (red solid curve). The
input is the dashed blue curve. Here " ¼ 0:05 (P ’ 0:6 W in our
experiment), �2 ¼ 1, � ¼ 0:3, yielding a physical breaking
(catastrophe) distance Zb ¼ Lzb ¼ 0:8 mm.
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conjecture that nonlocality stabilizes the soliton stripes in
the fan against transverse instabilities [16,21].

Importantly, the breaking distance (point in Z of maxi-
mum intensity gradient) turns out to be significantly af-
fected by the attenuation and the degree of nonlocality, an
issue that we have investigated in detail. In the local and
lossless case, the hydrodynamic limit yields a constant
normalized breaking distance zb ¼ 0:75, corresponding
to a physical distance Zb ¼ zbL that scales with power as

P�1=2
in . This is confirmed by numerical solutions of Eqs. (1)

and (2) with � ¼ � ¼ 0, performed for " ¼ 1=N, N in-
teger (i.e., Pin=Ps ¼ N2, Ps being the fundamental dark
soliton power [5]). As shown in Fig. 6(a), Zb approaches

the law P�1=2
in for high enough values of N. A similar trend

is confirmed by numerical simulations performed in the
nonlocal case by employing the parameters of our experi-
ment (we measured by means of Z-scan apparatus �0 ¼
1:17 mm�1, n2 ¼ �2� 10�10 m2=W), as reported in
Fig. 6(b). As shown, the expected breaking distance agrees
reasonably well with the measured data except for very low
and high powers, the latter showing a saturation effect not
accounted for by our model. Here we have used � as a
free parameter, finding the best agreement for � ’ 0:3,
which is consistent with our independent estimate � ¼
½ DT�0cpjn2j
�0jdn=dTjw2

0

�1=2 ’ 0:33 [20], based on the values of the

parameters for methanol DT ¼ 10�7 m2=s, �0 ¼
791 kg=m3, cp ¼ 2� 103 J kg�1 K�1, dn=dT ¼
�4� 10�4 K�1.

In summary, we have presented the first demonstration
of a gradient catastrophe occurring around a point of
vanishing field in the regime of strong nonlinearity. The
post-breaking dynamics gives rise to a fan of noninteract-
ing 1D soliton filaments. Because of weak dispersion such
filaments are very narrow, yet they are robust against non-
local averaging over much larger widths.
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FIG. 6 (color online). Breaking distance Zb vs input power Pin

(log-log scale): (a) local case, numerical results (circles) vs

behavior Zb / P�1=2
in (solid line), characteristic of the hydro-

dynamic limit; (b) nonlocal case, experimental results (circles)
vs data extrapolated from numerical simulations (dashed line)
performed for different values of powers Pin ("). Here � ¼ 0:3
was fixed to find the best agreement with the data.
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