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Starting from the Hamiltonian equation of motion in QCD, we identify an invariant light-front

coordinate � which allows the separation of the dynamics of quark and gluon binding from the kinematics

of constituent spin and internal orbital angular momentum. The result is a single-variable light-front

Schrödinger equation for QCD which determines the eigenspectrum and the light-front wave functions of

hadrons for general spin and orbital angular momentum. This light-front wave equation is equivalent to

the equations of motion which describe the propagation of spin-J modes on anti–de Sitter (AdS) space.
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One of the most important theoretical tools in atomic
physics is the Schrödinger equation, which describes the
quantum-mechanical structure of atomic systems at the
amplitude level. Light-front wave functions (LFWFs)
play a similar role in quantum chromodynamics (QCD),
providing a fundamental description of the structure and
internal dynamics of hadrons in terms of their constituent
quarks and gluons. The light-front wave functions of bound
states in QCD are relativistic generalizations of the
Schrödinger wave functions of atomic physics, but they
are determined at fixed light-cone time � ¼ tþ z=c—the
‘‘front form’’ introduced by Dirac [1]—rather than at fixed
ordinary time t. A remarkable feature of LFWFs is the fact
that they are frame independent; i.e., the form of the LFWF
is independent of the hadron’s total momentum Pþ ¼
P0 þ P3 and ~P?.

Light-front quantization is the ideal framework to de-
scribe the structure of hadrons in terms of their quark and
gluon degrees of freedom. The simple structure of the
light-front vacuum allows an unambiguous definition of
the partonic content of a hadron. Given the LFWFs, one
can compute observables such as hadronic form factors and
structure functions, as well as the generalized parton dis-
tributions and distribution amplitudes which underlie hard
exclusive reactions. The constituent spin and orbital angu-
lar momentum properties of the hadrons are also encoded
in the LFWFs.

A key step in the analysis of an atomic system such as
positronium is the introduction of the spherical coordinates
r, �, � which separates the dynamics of Coulomb binding
from the kinematical effects of the quantized orbital angu-
lar momentum L. The essential dynamics of the atom is
specified by the radial Schrödinger equation whose eigen-
solutions c n;LðrÞ determine the bound-state wave function

and eigenspectrum. In this Letter, we show that there is an
analogous invariant light-front coordinate � which allows
one to separate the essential dynamics of quark and gluon
binding from the kinematical physics of constituent spin
and internal orbital angular momentum. The result is a
single-variable light-front Schrödinger equation for QCD

which determines the eigenspectrum and the light-front
wave functions of hadrons for general spin and orbital
angular momentum.
Our analysis follows from recent developments in

light-front QCD [2–6] which have been inspired by the
AdS-CFT correspondence [7] between string states in anti–
de Sitter (AdS) space and conformal field theories (CFT) in
physical space-time. The application of AdS space and
conformal methods to QCD can be motivated from the
empirical evidence [8] and theoretical arguments [9] that
the QCD coupling�sðQ2Þ has an infrared fixed point at low
Q2. The AdS-CFT correspondence has led to insights into
the confining dynamics of QCD and the analytic form of
hadronic light-front wave functions. As we have shown
recently, there is a remarkable mapping between the de-
scription of hadronic modes in AdS space and the
Hamiltonian formulation of QCD in physical space-time
quantized on the light front. This procedure allows string
modes �ðzÞ in the AdS holographic variable z to be
precisely mapped to the light-front wave functions of
hadrons in physical space-time in terms of a specific
light-front variable � which measures the separation of
the quark and gluonic constituents within the hadron.
The coordinate � also specifies the light-front (LF) kinetic
energy and invariant mass of constituents. This mapping
was originally obtained by matching the expression for
electromagnetic current matrix elements in AdS space
with the corresponding expression for the current matrix
element using light-front theory in physical space-time [4].
More recently we have shown that one obtains the identical
holographic mapping using the matrix elements of the
energy-momentum tensor [6], thus providing an important
consistency test and verification of holographic mapping
from AdS space to physical observables defined on the
light front.
The connection between light-front QCD and the de-

scription of hadronic modes on AdS space is physically
compelling and phenomenologically successful. However,
there are lingering questions in this approach that should be
addressed. In particular, one wants to understand under
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what approximations (if any) a formal gauge-gravity cor-
respondence can be established for physical QCD. This
question is most important if QCD is to be described by the
low energy limit of some (yet unknown) string theory in a
higher dimensional space. In string theory a spin-J had-
ronic state is described by a spin-J field, whereas in physi-
cal QCD hadrons are composite and thus are inevitably
endowed of orbital angular momentum. How can these two
pictures be compatible? The mapping between string
modes in AdS and LFWFs described in [4,6] is an impor-
tant step, but one must also prove that our identification of
orbital angular momentum is correct and compatible with
the string description in terms of eigenmodes of total spin
J. It is also important to understand the nature and the
validity of the approximations involved in establishing a
gauge-gravity correspondence to find a framework to sys-
tematically improve the results.

In this letter we will show that to a first semiclassical
approximation, light-front QCD is formally equivalent to
the equations of motion on a fixed AdS5 gravitational
background. To prove this, we show that the LF
Hamiltonian equations of motion of QCD lead to an effec-
tive LF equation for physical modes �ð�Þ which encode
the hadronic properties. This LF equation carries the orbi-
tal angular momentum quantum numbers and is equivalent
to the propagation of spin-J modes on AdS space.

We express the hadron four-momentum generator P ¼
ðPþ; P�;P?Þ, P� ¼ P0 � P3, in terms of the dynamical
fields, the Dirac field cþ, c� ¼ ��c , �� ¼ �0��, and
the transverse field A? in the Aþ ¼ 0 gauge [10]

P� ¼ 1

2

Z
dx�d2x? �cþ�þ ðir?Þ2 þm2

i@þ
cþ

þ ðinteractionsÞ;
Pþ ¼

Z
dx�d2x? �cþ�þi@þcþ;

P? ¼ 1

2

Z
dx�d2x? �cþ�þir?cþ;

(1)

where the integrals are over the initial surface xþ ¼ 0,
x� ¼ x0 � x3. The operator P� generates LF time trans-
lations ½cþðxÞ; P�� ¼ i@cþðxÞ=@xþ, and the generators
Pþ and P? are kinematical. For simplicity we have omit-
ted from (1) the contribution from the gluon field A?.

The Dirac field operator is expanded as

cþðx�;x?Þ� ¼ X
�

Z
qþ>0

dqþffiffiffiffiffiffiffiffiffi
2qþ

p d2q?
ð2�Þ3

�½b�ðqÞu�ðq; �Þe�iq�x

þ d�ðqÞyv�ðq; �Þeiq�x�; (2)

with u and v LF spinors [11]. Similar expansion follows
for the gluon field A?. Using LF commutation relations

fbðqÞ; byðq0Þg ¼ ð2�Þ3	ðqþ � q0þÞ	ð2Þðq? � q0
?Þ, we find

P� ¼ X
�

Z dqþd2q?
ð2�Þ3

�
q2
? þm2

qþ

�
by�ðqÞb�ðqÞ

þ ðinteractionsÞ;

and we recover the LF dispersion relation q� ¼ q2
?þm2

qþ ,

which follows from the on shell relation q2 ¼ m2. The LF
time evolution operator P� is conveniently written as a
term which represents the sum of the kinetic energy of all
the partons plus a sum of all the interaction terms.
It is convenient to define a light-front Lorentz invariant

Hamiltonian HLF ¼ P
P

 ¼ P�Pþ � P2

? with eigen-

states jc HðPþ;P?; SzÞi and eigenmass M2
H, the mass

spectrum of the color-singlet states of QCD [10]

HLFjc Hi ¼ M2
Hjc Hi: (3)

A state jc Hi is an expansion in multiparticle Fock states
jni of the free LF Hamiltonian: jc Hi ¼

P
nc n=Hjni, where

a one parton state is jqi ¼ ffiffiffiffiffiffiffiffiffi
2qþ

p
byðqÞj0i. The Fock com-

ponents c n=Hðxi;k?i; �
z
i Þ are independent of Pþ and P?

and depend only on relative partonic coordinates: the
momentum fraction xi ¼ kþi =Pþ, the transverse momen-
tum k?i and spin component �z

i . Momentum conservation
requires

P
n
i¼1 xi ¼ 1 and

P
n
i¼1 k?i ¼ 0. The LFWFs c n=H

provide a frame-independent representation of a hadron
which relates its quark and gluon degrees of freedom to
their asymptotic hadronic state.
We compute M2 from the hadronic matrix element

hc HðP0ÞjHLFjc HðPÞi ¼ M2
Hhc HðP0Þjc HðPÞi, expanding

the initial and final hadronic states in terms of its Fock
components. The computation is much simplified in the

light-cone frame P ¼ ðPþ;M2=Pþ; ~0?Þ where HLF ¼
PþP�. We find

M2
H ¼ X

n

Z
½dxi�½d2k?i�

X
q

�
k2
? þm2

q

xq

�
jc n=Hðxi;k?iÞj2

þ ðinteractionsÞ; (4)

plus similar terms for antiquarks and gluons (mg ¼ 0Þ. The
integrals in (4) are over the internal coordinates of the n
constituents for each Fock state with phase space normal-
ization

X
n

Z
½dxi�½d2k?i�jc n=Hðxi;k?iÞj2 ¼ 1: (5)

The LFWF c nðxi;k?iÞ can be expanded in terms of n� 1
independent position coordinates b?j, j ¼ 1; 2; . . . ; n� 1,

so that
P

n
i¼1 b?i ¼ 0. We can also express (4) in terms of

the internal coordinates b?j with k2
? ! �r2

b? . The nor-

malization is defined by

X
n

Yn�1

j¼1

Z
dxjd

2b?jjc n=Hðxj;b?jÞj2 ¼ 1: (6)

To simplify the discussion we will consider a two-parton
hadronic bound state. In the limit mq ! 0
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M2¼
Z 1

0
dx

Z d2k?
16�3

k2
?

xð1�xÞjc ðx;k?Þj2þðinteractionsÞ

¼
Z 1

0

dx

xð1�xÞ
Z
d2b?c �ðx;b?Þð�r2

b?Þc ðx;b?Þ
þðinteractionsÞ: (7)

It is clear from (7) that the functional dependence for a
given Fock state is given in terms of the invariant mass

M 2
n ¼

�Xn
a¼1

k
a

�
2 ¼ X

a

k2
?a þm2

a

xa
! k2

?
xð1� xÞ ; (8)

the measure of the off-mass shell energy M2 �M2
n.

Similarly, in impact space the relevant variable for a two-
parton state is �2 ¼ xð1� xÞb2

?. Thus, to first approxima-

tion LF dynamics depends only on the boost invariant
variable Mn or � and hadronic properties are encoded in
the hadronic mode�ð�Þ: c ðx;k?Þ ! �ð�Þ. We choose the
normalization of the LF mode �ð�Þ ¼ h�j�i

h�j�i ¼
Z

d�jh�j�ij2 ¼ 1: (9)

We write the Laplacian operator in (7) in circular cylin-

drical coordinates (� , ’) with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp jb?j: r2

� ¼
1
�

d
d� ð� d

d�Þ þ 1
�2

@2

@’2 , and factor out the angular dependence

of the modes in terms of the SOð2Þ Casimir representation
L2 of orbital angular momentum in the transverse plane:
�ð�; ’Þ � e�iL’�ð�Þ. Expressing the LFWF c ðx; �Þ as a
product of the LF mode �ð�Þ and a prefactor fðxÞ,
c ðx; �Þ ¼ �ð�Þffiffiffiffiffiffiffi

2��
p fðxÞ, we find

M 2¼
Z
d���ð�Þ ffiffiffi

�
p �

� d2

d�2
�1

�

d

d�
þL2

�2

�
�ð�Þffiffiffi

�
p

þ
Z
d���ð�ÞUð�Þ�ð�Þ

¼
Z
d���ð�Þ

�
� d2

d�2
�1�4L2

4�2
þUð�Þ

�
�ð�Þ; (10)

where the complexity of the interaction terms in the QCD
Lagrangian is summed up in the addition of the effective
potential Uð�Þ, which is then modeled to enforce confine-

ment at some IR scale. The LF eigenvalue equation
HLFj�i ¼ M2j�i is thus a LF wave equation for �

�
� d2

d�2
� 1� 4L2

4�2
þUð�Þ

�
�ð�Þ ¼ M2�ð�Þ; (11)

an effective single-variable light-front Schrödinger equa-
tion which is relativistic, covariant, and analytically trac-
table. From (4) one can readily generalize the equations to
allow for the kinetic energy of massive quarks [5].
As the simplest example we consider a baglike model

[12] where partons are free inside the hadron and the
interaction terms effectively build confinement. The effec-
tive potential is a hard wall: Uð�Þ ¼ 0 if � � 1=�QCD and

Uð�Þ ¼ 1 if � > 1=�QCD. However, unlike the standard

bag model [12], boundary conditions are imposed on the
boost invariant variable � , not on the bag radius at fixed
time. If L2 	 0 the LF Hamiltonian is positive definite
h�jHLFj�i 	 0 and thus M2 	 0. If L2 < 0 the
LF Hamiltonian is unbounded from below and the particle
‘‘falls towards the center’’ [13]. The critical value corre-
sponds to L ¼ 0. The mode spectrum follows from the
boundary conditions �ð� ¼ 1=�QCDÞ ¼ 0, and is given in

terms of the roots of Bessel functions: ML;k ¼ �L;k�QCD.

Since in the conformal limit ðUð�Þ ! 0Þ Eq. (11) is equiva-
lent to an AdS wave equation, the hard-wall LF model
discussed here is equivalent to the hard-wall model of
Ref. [14]. Likewise a two-dimensional oscillator with ef-
fective potential Uð�Þ � �2 is equivalent to the soft-wall
model of Ref. [15] which reproduces the usual linear
Regge trajectories.
We are now in a position to find out if the first-order

approximation to light-front QCD discussed above admits
an effective gravity description. To examine this question it
is useful to study the structure of the equation of motion of
p forms in AdS space, which for p ¼ 0 and p ¼ 1 repre-
sent spin 0 and spin 1 states, respectively. A p form in AdS
is a totally antisymmetric tensor field �‘1‘2���‘p of rank p

which couples to an interpolating operatorO of dimension
d� p at the AdS boundary. Fermionic modes will be
described elsewhere. In tensor notation the equations of
motion for a p form are expressed as the set of pþ 1
coupled equations [16]

½z2@2z � ðdþ 1� 2pÞz@z � z2@�@
� � ð
RÞ2 þ dþ 1� 2p��z�2����p

¼ 0;

½z2@2z � ðd� 1� 2pÞz@z � z2@�@
� � ð
RÞ2���1�2����p

¼ 2zð@�1
�z�2����p

þ @�2
��1z����p

þ � � �Þ; (12)

where
 is a dþ 1-dimensional mass, � ¼ 0; 1; � � � ; d� 1
and R is the AdSdþ1 radius.

Consider the plane-wave solution �Pðx; zÞ�1����p
¼

e�iP�x�ðzÞ�1����p
, with four-momentum P
, invariant

hadronic mass P
P

 ¼ M2 and spin indices � along

the 3þ 1 physical coordinates. For string modes with
all indices along the Poincaré coordinates, �z�2����p

¼
��1z����p

¼ � � � ¼ 0, the coupled differential equations

(12) reduce to the homogeneous wave equation

½z2@2z � ðd� 1� 2pÞz@z þ z2M2 � ð
RÞ2���1����p
¼ 0;

(13)

with conformal dimension � given by the relation
ð
RÞ2 ¼ ð�� pÞð�� dþ pÞ.
Thus when the polarization indices are chosen along the

physical 3þ 1 Poincaré coordinates, the p-form equation
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(12) becomes homogeneous and its polarization structure
decouples; i.e., it is independent of the kinematical polar-
ization structure of the indices. Thus it also describes the
dynamics of a spin J ¼ p mode in AdS �ðx; zÞ
1���
J

,

which is totally symmetric in all its indices. To prove
this, consider the AdS wave equation (13) for a scalar
mode � (p ¼ 0), and define a spin-J field �
1���
J

with

shifted dimensions:�JðzÞ ¼ ðz=RÞ�J�ðzÞ, and normaliza-
tion [17]

Rd�2J�1
Z zmax

0

dz

zd�2J�1
�2

JðzÞ ¼ 1: (14)

The shifted field �J obeys the equation of motion

½z2@2z � ðd� 1� 2JÞz@z þ z2M2 � ð
RÞ2��J ¼ 0;

(15)

where the fifth dimensional mass is rescaled according to
ð
RÞ2 ! ð
RÞ2 � Jðd� JÞ. One can then construct an
effective action in terms of high spin modes �ðx; zÞ
1���
J

with only the physical degrees of freedom [15].

Upon the substitution z ! � and�Jð�Þ � ��3=2þJ�Jð�Þ
in (15) we recover for d ¼ 4 the QCD light-front wave
equation (11) in the conformal limit

�
� d2

d�2
� 1� 4L2

4�2

�
�
1���
J

¼ M2�
1���
J
; (16)

where the fifth-dimensional mass is not a free parameter
but scales according to ð
RÞ2 ¼ �ð2� JÞ2 þ L2. In the
hard-wall model there is a total decoupling of the total spin
J. For L2 	 0 the LF Hamiltonian is positive definite
h�JjHLFj�Ji 	 0 and we find the stability bound ð
RÞ2 	
�ð2� JÞ2. For J ¼ 0 the stability condition gives the
bound ð
RÞ2 	 �4. The quantum-mechanical stability
conditions discussed here are thus equivalent to the
Breitenlohner-Freedman stability bound in AdS [18]. The
scaling dimensions are � ¼ 2þ L independent of J in
agreement with the twist scaling dimension of a two-parton
bound state in QCD.

We have shown that the use of the invariant coordinate �
in light-front QCD which is related to the fundamental
constituent structure, allows the separation of the dynamics
of quark and gluon binding from the kinematics of con-
stituent spin and internal orbital angular momentum. The
result is a single-variable LF Schrödinger equation which
determines the spectrum and LFWFs of hadrons for gen-
eral spin and orbital angular momentum. This LF wave
equation serves as a semiclassical first approximation to
QCD and is equivalent to the equations of motion which
describe the propagation of spin-J modes on AdS.
Remarkably, the AdS equations correspond to the kinetic
energy terms of the partons inside a hadron, whereas the
interaction terms build confinement and correspond to the
truncation of AdS space. As in this approximation there are
no quantum corrections, there are no anomalous dimen-
sions. This may explain the experimental success of power-

law scaling in hard exclusive reactions where there are no
indications of the effects of anomalous dimensions. In the
hard-wall model there is total orbital decoupling from
hadronic spin J and thus the LF excitation spectrum of
hadrons depends only on orbital and principal quantum
numbers. In this model the mass dependence has the linear
form: M� 2nþ L. In the soft-wall model the usual
Regge behavior is found M2 � nþ L, where the slope
in L and n is identical. Both models predict the same
multiplicity of states for mesons and baryons as observed
experimentally [19]. As in the Schrödinger equation, the
semiclassical approximation to light-front QCD described
in this Letter does not account for particle creation and
absorption, and thus it is expected to break down at short
distances where hard gluon exchange and quantum correc-
tions become important. However, one can systematically
improve the holographic approximation by diagonalizing
the QCD light-front Hamiltonian on the AdS-QCD basis.
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