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Scalable quantum computation in realistic devices requires that precise control can be implemented

efficiently in the presence of decoherence and operational errors. We propose a general constructive

procedure for designing robust unitary gates on an open quantum system without encoding or measure-

ment overhead. Our results allow for a low-level error correction strategy solely based on Hamiltonian

engineering using realistic bounded-strength controls and may substantially reduce implementation

requirements for fault-tolerant quantum computing architectures.
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Physical realizations of quantum information processing
hold the potential to solve problems in physics simulation,
combinatorial analysis, and secure communications with
unprecedented power compared with known classical
counterparts [1]. The discovery that arbitrarily accurate
(fault-tolerant) quantum computation (QC) may be sup-
ported by real-world imperfect devices provided that the
overall noise is below a certain threshold [2] indicates that
no fundamental obstacle prevents this power from being
harnessed in principle. The requirement on errors affecting
an operation on physical qubits may be quantified in terms
of an appropriate error per gate, EPG. While suggestive
evidence exists that EPGs well above 10�3 can be tolerated
through exploitation of concatenated quantum error cor-
rection (QEC) [3] and postselection [4,5], implementation
requirements remain daunting. The main obstacle in gen-
erating precise unitary transformations on an open quan-
tum system is due to the fact that a control prescription
realizing a desired gate in the ideal (closed-system) limit
no longer works accurately in the presence of an uncontrol-
lable environment: typically, the resulting EPG will be
proportional to both the noise strength and gating time.
Our goal is to show how, for open quantum systems under-
going linear decoherence, information about the errors of a
fixed set of primitive gates may be exploited to construct
dynamically corrected gates (DCGs) which achieve a sig-
nificantly smaller EPG using realistic bounded-strength
control resources.

Our approach successfully merges elements from differ-
ent techniques for high-fidelity coherent quantum con-
trol—including composite [6–8] and strongly modulating
pulses [9] from nuclear magnetic resonance (NMR), as
well as dynamical decoupling (DD) methods for decoher-
ence suppression [10,11]. Common to these approaches is
the idea of enforcing active error cancellation through
purely Hamiltonian (open-loop) control, bypassing the
need for measurement or feedback implicit in QEC.
Similar to strongly modulating pulses, DCGs coherently
average out unwanted evolution by cascading primitive
control operations within a self-contained composite
block. Unlike the standard NMR setting, however, where

the unintended error component is either classical or in-
duced by a known spin Hamiltonian, DCGs must operate
without assuming complete knowledge or control over the
underlying open-system Hamiltonian. As we shall see, a
general analytic prescription for the required control
modulation may be established by suitably incorporating
known relationships between errors into control design.
Our results advance open-loop approaches to error con-

trol in several ways. While DD-inspired constructions have
been employed to obtain shaped pulses which approximate
ideal ‘‘� pulses’’ by self-refocusing specific unwanted
couplings up to some degree [12,13], existing schemes
do not incorporate the effect of a generic quantum environ-
ment. In contrast, DCGs provide a complete prescription
for achieving universal QC with reduced error solely based
on unitary manipulations. Although procedures for com-
bining DD with logic gates have been established in [14] in
the so-called ‘‘bang-bang’’ limit and rigorously analyzed
in [15], our approach has the key advantages of avoiding
unphysical bang-bang controls from the outset, along with
the need for encoding and stringent time synchronization.
Thus, DCGs can be instrumental as a low-level error
control strategy for bringing quantum fault tolerance closer
to current capabilities.
Error and control assumptions.—Consider a target sys-

tem S consisting of n qubits, coupled to an environment (or
bath) B. The joint evolution is governed by a Hamiltonian
of the form H ¼ HS � IE þHe, where the error
Hamiltonian He ¼ IS �HB þHSB is responsible for both
pure bath evolution via HB and unwanted interaction via
HSB ¼ P

�S� � B�, for operators S�ðB�Þ acting on S (B),
with S� traceless. We focus on the case where S is driftless,
HS ¼ 0, and subject to arbitrary linear decoherence:

HSB ¼ Xn
i¼1

X
�¼x;y;z

SðiÞ� � BðiÞ
� ¼ X

i;�

�ðiÞ
� � BðiÞ

� : (1)

We further assume the bath operators HB and BðiÞ
� to be

bounded [16], but otherwise unknown.
Control over S is implemented by applying a time-

dependent Hamiltonian HctrlðtÞ. Let the propagator

Uctrlðt2; t1Þ ¼ T þ expf�i
Rt2
t1 HctrlðtÞdtg, in units @ ¼ 1, ef-
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fect an intended gate on S in the absence ofHe. IfHSB � 0,
application of the same control Hamiltonian results in an
actual propagator Uðt2; t1Þ whose action deviates from the
intended one due to error dynamics induced by He. The
EPG may be quantified in terms of a Hermitian error phase
operator �ðt2; t1Þ by writing Uðt2; t1Þ ¼ Uctrlðt2; t1Þ�
exp½�i�ðt2; t1Þ�. Physically, � is related to the time-
dependent error Hamiltonian which describes the joint
evolution in the ‘‘toggling frame’’ that follows the control
[10]. The norm of � bounds the fidelity loss between the
intended and actual evolution of S [17]. � may contain
pure bath terms that have no effect on the reduced system
dynamics, e.g., whenHSB ¼ 0,�ðt2; t1Þ ¼ ðt2 � t1ÞHB. To
avoid ambiguity, we define an operator Amodulo pure bath
terms by letting AmodB ¼ A� 2�nTrSA.

We specify the available control resources by assuming
access to the following switchable control Hamiltonians:

fhxðtÞXðiÞ; hyðtÞYðiÞ; hzzðtÞZðiÞZðjÞg; (2)

for appropriate control inputs haðtÞ. This allows any uni-
tary evolution on S to be approximated within the circuit
model of QC [1]. Specifically, a universal gate set is given
by (i) NOOP gates, in which no operation is performed on
some or all of the qubits; (ii) arbitrary single-qubit rota-

tions on qubit i, XðjÞ
2� ¼e�i�XðjÞ

and YðjÞ
2� ¼e�i�YðjÞ

; (iii) two-

qubit phase gates between qubits i and j, ZðijÞ
2� ¼ e�i�ZðiÞZðjÞ

.

Realistic control profiles haðtÞ will be constrained in many
ways due to limited pulse-shaping capabilities. We incor-
porate finite-power and finite-bandwidth constraints by
assuming the existence of a minimum switching time
�min for modulation and by requiring all control strengths
haðtÞ to be bounded by hmax. A gate realized using a single
control input in a predetermined manner shall be referred
to as primitive—for instance, gates implemented by turn-
ing on and off a Hamiltonian from the above set according
to a rectangular profile may be called primitive.

In control-theoretic terms, our goal is as follows: Given a
desired unitary gate Ugate in the universal set, devise a

control procedure HctrlðtÞ using Hamiltonians in the avail-
able repertoire, Eq. (2), such that (i) Uctrlðt2; t1Þ ¼ Ugate;

(ii) the error k�ðt2; t1ÞmodBk is significantly reduced com-
pared with the primitive EPG. We construct an analytic
perturbative solution which does not resort to measure-
ments, extra qubit resources, or any quantitative knowl-
edge of the error Hamiltonian He except its algebraic
structure, Eq. (1). Our solution is perturbative in the sense
that k�ðt2; t1ÞmodBk becomes proportional to �2min. Since

naive switching of HctrlðtÞ would yield error phases that
scale with Oð�minkHSBkÞ, this implies EPGs reduced by a
factor of Oð�minkHekÞ.

Error combination and cancellation.—The first step to-
ward DCGs is to quantify the error phase arising from
cascading N gates. Let U ¼ UNUN�1 � � �U1U0, where
U0 ¼ ISB and the jth operation Uj during [tj�1, tj], which

is intended to generate Uctrl;j ¼ Uctrlðtj; tj�1Þ in the ab-

sence of He, has an EPG �j. Up to the first order in

maxjðk�jkÞ, the total error �U is

�U ¼ XN
j¼1

Uy
ctrl;j�1�jUctrl;j�1 þ�½2þ�; (3)

where k�½2þ�k ¼ OðN2 maxk�jk2Þ. Each error �j can be

computed up to the first order in ðti � ti�1ÞkHSBk as

�½1�
j ¼

Z tj

tj�1

Uy
ctrlðt; tj�1ÞHeUctrlðt; tj�1Þdtþ�½2þ�

j ;

with k�½2þ�
j k¼O½ðti� ti�1Þ2kHek2�. Here, A½2þ� includes

corrections of second- or higher-order powers in �j to A.

The next step is to seek a combination of gates which
removes the combined error (at least) up to the first order.
This is reminiscent of DD approaches to QEC, whereby the
time scale difference between the action of the errors (in
the non-Markovian regime) and the available controls is
leveraged to reduce or symmetrize the effect of the envi-
ronment [10]. While several flavors of DD are possible
depending on system and design specifics, the formulation
relevant to our purpose is Eulerian DD (EDD) [18], which
implements DD using bounded-strength controls and guar-
antees robustness against systematic control faults.
Consider a set of unitary operators on S, which form a
(projective) representation fUgig of the so-called DD group

G ¼ fgigDi¼1, and let � be the subspace of all traceless
(modulo pure bath) operators which obey the following
decoupling condition:�X

i

Uy
giEUgi

�
modB

¼ 0; 8 E 2 �:

A good DD group ensures, in particular, that� contains all
operators generated by the errors fS�g we wish to correct.
For single-qubit error generators as in Eq. (1), the smallest
DD group is G ¼ Z2 � Z2 under the n-fold product rep-
resentation in terms of collective Pauli matrices

fIðallÞ; XðallÞ; YðallÞ; ZðallÞg, with SðallÞ� ¼ N
n
i¼1 S

ðiÞ
� . Consider

the Cayley graph associated to a set of generators fhjgLj¼1

of G. In this directed graph, each vertex represents a group
element, and two vertices gi, gj are connected with an edge

labeled by the generator h if and only if gj ¼ gih. Cayley

graphs always have an Eulerian cycle, that is, there exists a
closed sequence of L�D connected edges that visits each
edge exactly once. The Cayley graph of Z2 � Z2 is shown
in Fig. 1(left), along with an Eulerian cycle beginning (and
ending) at the identity. Consider now a sequence of primi-
tive gates that implement the generators fhjg in the same

order they appear in this Eulerian cycle. Provided that
same generators are implemented by same gates along
the path, the error of the full sequence may be obtained
using Eq. (3):

�EDD ¼ X
j;i

Uy
gi�hjUgi þ�½2þ�

EDD;

where �hj is the EPG associated to hj and k�½2þ�
EDDk ¼
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Oðmaxk�hjk2Þ. As long as �hj 2 � up to the first order,

then irrespective of how each primitive gate is imple-
mented, ð�EDDÞmodB ¼ 0 up to the first order. Thus, a
dynamically corrected NOOP can be effected with a signifi-
cantly smaller error compared to the free evolution.

Dynamically corrected gates.—The above construction
does not directly extend to transformations other than NOOP

[19]. In order to build composite gates which (as in EDD)
not only cancel the combined error but (unlike EDD) ef-
fect a nontrivial rotation U, we need to use relationships
between the errors of the primitive gates. One such re-
lationship is obtained when two combinations of gates
MI and MU, intended to generate I and U � I, re-
spectively, have the same error to the leading order. Expli-
citly: MU ¼ U expð�i�Þ and MI ¼ expð�i�Þ. This rela-
tionship suggests the following modifications of the Cayley
graph used for NOOP: (i) To every vertex other than identity,
attach a self-directed edge labeled with MI; (ii) To the
identity vertex attach a new vertex representing U through
an edge labeled by MU, see Fig. 1 (right). This new graph
possesses an Eulerian path starting at I and ending at U,
which implements a DCG U. The net EPG for the corre-
sponding gate sequence is given by

�DCG ¼ �EDD þX
i

Uy
gi�Ugi þ�½2þ�

DCG;

where k�½2þ�
DCGk ¼ O½maxðk�hjk2; k�k2Þ�. As long as �hj

and� all belong (up to the first order) to the subspace� of
correctable errors, ð�DCGÞmodB ¼ 0, up to Oðk�kÞ. Thus,
U is implemented with a significantly smaller error com-
pared with MU.

Resource requirements and performance.—We now pro-
vide an explicit construction of dynamically corrected
NOOP, single-, and two-qubit gates within the control sce-

nario specified in Eq. (2). Let 2� parametrize the rotation
angle. For each operation, we assume that (i) the control
profile h�ðtÞ in the interval [t1, t2] is obtained by stretching,
scaling, and additions of a fixed reversible pulse shape

h0ðtÞ, t 2 ½0; 1�, e.g., we let h½t1;t2�� ðtÞ ¼ �h0ð t�t1
t2�t1

Þ; (ii) both
positive and negative values for h0ðtÞ are available.
Rectangular pulses provide the simplest illustrative setting,
with h0ðtÞ ¼ 1 if t 2 ½t1; t2�, and zero otherwise. A con-
crete example of control sequences that yield equal errors,
yet differ in the intended action is given by the following
two piecewise-constant control profiles:

h1ðtÞ ¼ ð�=�Þ½h0ðt=�Þ � h0ð2� t=�Þ�; (4)

h2ðtÞ ¼ ð�=2�Þh0ðt=2�Þ; � � �min: (5)

In Eq. (4), h1ðtÞ corresponds to a sequence of two primitive
gates intended to implement the identity over time 2�. In
Eq. (5), h2ðtÞ corresponds to a primitive gate of duration 2�
implementing C2�. One may show [19] that for any choice
of the basic shape h0, the errors are the same up to the

leading order, �½1�
1 ¼ �½1�

2 , and belong to the subspace

�2;inhom of inhomogeneous two-qubit system-bath terms

spanned by f�ðiÞ
� �ðjÞ

� � BðijÞ
��g, with � � �. The modified

Cayley graph for a DCG C2� can be obtained by special-
izing the Eulerian path depicted in Fig. 1 to the case where
U originates from h2ðtÞ and I from h1ðtÞ, respectively.
Notice that the final edge associated with h2ðtÞ connects
the identity to the new vertex representing the desired C2�.

The required gates XðallÞ and YðallÞ are implemented through
collective single-qubit Hamiltonians. Direct calculation
shows that the errors for all the primitive gates used involve
only single-qubit terms,�single � �2;inhom � �. Thus, the

combined error is zero modulo pure bath terms, up to the
first order. The resulting DCG circuit appears in Fig. 2. The
DCG for C2� is longer in duration than a single primitive

C2� gate by a factor of 16. The error kð�½2þ�
DCGÞmodBk on the

other hand is found to be reduced by a factor of order
Oð�kHekÞ.
The above estimate indicates that significant improve-

ment is expected for sufficiently small �min. Quantitative
supporting results are given in Fig. 3 for an algorithm
which prepares a 3-qubit cat state jc cati for a spin-based
qubit device coupled to a spin bath. While the simulation is
performed for a relatively small system, it does show the
expected behavior of DCGs in the regime where individual
primitive EPGs are small. For this reason, the net fidelity
loss using primitive EPG is chosen as the x axis in Fig. 3, as
opposed to a less objective measure such as the coupling
strength. A systematic control error is also included, al-

FIG. 2 (color online). Quantum circuit for a DCG on qubit 1.
The NOOP is implemented by dropping all C�2� gates.

FIG. 1 (color online). Left: The Cayley graph for Z2 � Z2

represented by collective Pauli operators fI; X; Y; Zg, together
with an Eulerian cycle marked by numbers. Edges are labeled by
the generators X, Y, and arrows denote the direction of action.
Right: Modified Cayley graph supporting an Eulerian path that
cancels errors in a nonidentity gate. The new edges correspond to
sequences with the same (leading-order) error.
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lowing its interplay with the bath-induced errors to be
analyzed. Several conclusions may be drawn. For ideal
control, the EPG reduction is manifest in the change of
slope between dynamically corrected (thick dashed line)
and uncorrected (narrow dashed line) data, resulting in the
‘‘cone of improvement’’ of the procedure. The smaller the
primitive EPG, larger amounts of systematic control faults
may be tolerated, resulting in larger regions of improve-
ment within the above cone. Notice that while systematic
error compensation along the standard Cayley graph is
ensured [18], robustness need not be retained along the
added arms in the modified graph. Thus, no further im-
provement from reducing the primitive EPG arises once
uncompensated systematic error dominates over bath-
induced error, leading to the observed performance
plateaux.

Discussion.—We have shown how to synthesize unitary
gates able to approximate ideal gates in a universal set with
a quadratic error with respect to the original EPG without
encoding or measurements. While our present construction
addresses arbitrary linear decoherence, different algebraic
error structures may be tackled by modifying the DD
group. Notably, for dephasing-dominated error processes,
simpler DCGs based on 6 (vs 16) primitive gates suffices,

which may be relevant to recently proposed fault-tolerant
superconducting architectures under biased noise [20]. Our
results provide the starting point for several generaliza-
tions. The restriction to driftless systems and the pulse
shape assumptions may be relaxed, at the expenses of a
more complex search for identifying distinct primitive gate
sequences with the same leading error [19]. Systematic
control faults can be further mitigated by concatenating
DCGs with composite pulses, at the expenses of longer
control sequences. Conceptually, our analysis points to
suggestive trade offs between available error knowledge
and error correctability in open-loop strategies. Ultimately,
we believe that DCGs will further boost the practical
significance of dynamical error control for quantum engi-
neering and fault-tolerant computation.
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FIG. 3 (color online). DCG performance in a 3-qubit cat-state
algorithmic benchmark, using the metric 1� Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cat�out�cat

p
,

with �cat ¼ jc catihc catj and �out the actual output state. Linear
decoherence from a 5-qubit bath and systematic control errors
are included. Hadamard and CNOT gates appearing in the inset
quantum circuit are decomposed as sequences of (2 and 6,
respectively) physical primitive gates, and each such gate is
replaced by a DCGs, for a total of ð2þ 2� 6Þ � 16 ¼ 256
control time slots. Every bath spin Ia interacts via a

Heisenberg coupling with every other system or bath spin, He ¼
�
P

a<b
~IðaÞ � ~IðbÞ þ A

P
i;a ~�

ðiÞ � ~IðaÞ, in such a way that (in units of

��1
min) � ¼ 1 and log10A ¼ �1;�1:4; . . . ;�5:8, corresponding to

different circles along a given curve in the figure. Rectangular
pulse profiles are used throughout, systematic pulse-length errors
being included by modifying h0ðtÞ as h0ðtÞð1þ �Þ. Line thick-
ness proportionally represents error strength �. Note the bunch-
ing of data points at low EPG for each �, signaling a regime
dominated by systematic error.
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