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Given a multilevel system coupled to a bath, we use a Feshbach P,Q partitioning technique to derive an

exact trace-nonpreserving master equation for a subspace Si of the system. The resultant equation

properly treats the leakage effect from Si into the remainder of the system space. Focusing on a second-

order approximation, we show that a one-dimensional master equation is sufficient to study problems of

quantum state storage and is a good approximation, or exact, for several analytical models. It allows a

natural definition of a leakage function and its control and provides a general approach to study and

control decoherence and leakage. Numerical calculations on an harmonic oscillator coupled to a room

temperature harmonic bath show that the leakage can be suppressed by the pulse control technique without

requiring ideal pulses.
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Introduction.—Control of quantum dynamics is of great
interest for ‘‘quantum technology industries,’’ such as
quantum computing. The control of closed quantum sys-
tems is well established and has been extensively studied in
areas such as chemical physics [1,2]. Efforts to extend
these studies to open systems, where the system interacts
with an environment, are now underway [3]. Quantum
information processing has already expended considerable
effort on open systems. Hence, we anticipate that methods
being developed in the latter area may well be useful in the
former, and vice-versa [4].

A fundamentally difficult problem in quantum informa-
tion processing is that of decoherence, i.e., the loss of
quantum information in a system due to its interaction
with its environment (or ‘‘bath’’) [5,6]. For multilevel
systems, such as molecules, the interaction can also cause
leakage (i.e., loss of population) from a system subspace of
interest, denoted Si, into the system space outside of Si.
Theoretical strategies for combating such deleterious en-
vironmental effects in the absence of natural decoherence
free subspaces [6,7] invoke the dynamical control of
system-environment interactions by external fields [8–14].

The aim of dynamical control in open systems is to
suppress effects of the environment in order to control
system processes at will. For example, ideal Bang-Bang
(BB) control of decoherence, decay, and leakage [10,11]
utilizes idealized zero-width pulses and the Trotter formula
to achieve this goal, although higher-order finite-pulse
widths have been considered in model cases [12].

Proposals to control decoherence by realistic (nonideal)
pulses have often invoked Zwanzig’s projection-operator
techniques [13,14] resulting in a differential master equa-
tion for the density operator of the system up to second
order in the system-bath coupling. This equation allows the

tractable treatment of complicated quantum dynamical
processes, eliminating the ideal zero-width pulses and
Trotter formula assumptions and allowing natural dynami-
cal evolution and dynamical control on an equal footing.
For example, Ref. [13] provides a unified way to suppress
the decoherence of two-level systems by arbitrary fields
that control the system-bath interaction.
Below, we consider an N dimensional system (N can be

infinite), spanned by the bases fjnig, coupled to a bath, and
develop procedures to protect quantum information stored
in a d-dimensional subspace Si of the system. Specifically,
we use a projection-operator approach to obtain an exact
trace-nonpreserving master equation for the dynamics of
the system subspace Si. We then introduce a characteristic
leakage function which is used to consider dynamics and
control of this subspace to second order in the system-bath
interaction.
Zwanzig’s projection-operator approach.—The most

general Hamiltonian of the N dimensional system plus
the bath is

H ¼ H0 þHI ¼ HS þHB þHI; (1)

where HS and HB are the system and bath Hamiltonians,
respectively, and the system-bath interaction is HI ¼P

�S�B�, where S� and B� are Hermitian system and
bath operators. During the dynamics, the information
stored in the system subspace of interest Si will distribute
into the bath and leak into the system states outside of Si if
one does not protect the subspace. Therefore, in order to
store the information in Si, we need to control the system
through an interaction with an external fieldHcðtÞ, protect-
ing the information during the course of time t. The total
system Hamiltonian including control is therefore HSðtÞ ¼
HS þHcðtÞ.
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We first derive a closed master equation for Si. Since Si

opens both to bath and to other system states outside of Si,
effects of leakage have to be considered in deriving a
master equation. As usual, the derivation begins in the
interaction representation with respect to H0, in which
the equation of motion is @

@t �ðtÞ ¼ �i½HIðtÞ; �ðtÞ� �
LðtÞ�ðtÞ. Here, the system-bath interaction is HIðtÞ in the
interaction representation, and the Liouville superoperator
LðtÞ is defined by this equation [15]. The superprojection
operation P that we seek defines the relevant part of the
total density matrix [15] P�ðtÞ for our new open system,
i.e., the subspace Si of the entire system. Specifically, the
superprojection operation comprises two commuting parts:
a trace over the bath components, and a projecting out of
the Si subspace from the full N-dimensional space of the
system. The associated superprojector P is therefore de-
fined as

P � ¼ P trBf�gP � �B � � � �B;

where P ¼ P
d�1
i¼0 jiihij denotes a projection onto Si and �

is the relevant part of the total density matrix, which is
projected from the total system density matrix �S ¼ trB�
as � � P�SP. The matrix �B is chosen as the initial state
of the bath. The trace of the matrix� is not necessarily one,
but � satisfies a closed equation as does �S, and plays the
same rule as �S, but in Si. That is, an arbitrary system
observable acting only on Si obeys the relation O ¼ POP.
The expectation value of the operator O when the system
+bath is in state � is trf�Og ¼ trfP�SPOg ¼ trf�Og,
which is the same as the expectation value of the operator
O in the state characterized only by �. Thus, the matrix �
provides a complete description of the physics in Si.

Applying the superprojector to the equation of motion
for � gives a time-local master equation

@

@t
P�ðtÞ ¼ KðtÞP�ðtÞ; (2)

whereKðtÞ is the time-convolutionless generator [15]. Un-
like the usual approach, our new system is a d-dimensional
subspace of the N-dimensional space of the total system.
Alternatively, Eq. (2) can be derived by applying the
Feshbach projection-operator approach [16,17] to the tra-
ditional trace-preserving master equation for �S.

Equation (2) is exact and holds for almost [15] all
arbitrary systems and interactions, and for initial condi-
tions �ð0Þ ¼ P�ð0Þ, i.e., where the quantum system is
initially within Si. Since population can flow out of this
subspace, the master equation is not trace-preserving.
Unfortunately this equation is as difficult to solve as the
original equation. Therefore, perturbation expansions are
needed in order to apply the result to actual problems.

To second order in the coupling strength of the interac-
tion, KðtÞ ¼ R

t
0 dsPLðtÞLðsÞP . Introducing the explicit

expressions for the projection operator and the Liouville
superoperator, we can obtain the second-order d� d di-
mensional master equation in the interaction representa-
tion,

@

@t
�ðtÞ¼��2

Z t

0
dsP trB½HIðtÞ;½HIðsÞ;�ðtÞ��B��P: (3)

Here, �HI replaces HI, with the small parameter � intro-
duced to characterize the order of perturbation expansion.
For the single component interaction HIðtÞ ¼ SðtÞBðtÞ,
Eq. (3) can be considerably simplified.
One-dimensional dynamics and the principle of con-

trol.—A primary example is the dynamics, control, and
protection of one normalized state j�i, in the interaction
representation, within the d-dimensional subspace Si.
[Spontaneous emission, for example, is a case where j�i
is an energy eigenstate]. In general, j�i is a superposition
of eigenstates, rather than a single eigenstate, and we can
rearrange the bases of Si so that j�i is one of the new
orthonormal basis elements.
Suppose that the initial state �ð0Þ ¼ j�ih�j. The sub-

system evolves according to the closed Eq. (3) with d ¼ 1
and, at time t, �ðtÞ ¼ bðtÞj�ih�j, where, in general, bðtÞ is
written as

bðtÞ ¼ exp½�LðtÞ�; (4)

with bðtÞ � 1 or LðtÞ � 0. Substituting�ðtÞ into the master
Eq. (3) with d ¼ 1 gives an analytic expression second
order in �,

LðtÞ ¼ �2
Z t

0
dsCðsÞ; (5)

where

CðsÞ ¼
Z s

0
ds0

X
��

½S��ðs; s� s0Þ���ðs0Þ þ H:c:�; (6)

and S��ðs; s0Þ ¼ �S�ðsÞ�S�ðs0Þ. Here, �S�ðtÞ ¼
S�ðtÞ � S�ðtÞ and S�ðtÞ ¼ h�jS�ðtÞj�i. ���ðt� sÞ ¼
trB½B�ðtÞB�ðsÞ�B� is the bath correlation function for mul-

titerm system-bath interactions. Note that CðsÞ is a linear
function of matrix elements ���. We term the time-
dependent LðtÞ a leakage function, by analogy with the
decoherence function [15]. It describes the leakage from Si

due to the bath and into the space outside of Si. Higher than
second-order effects in the leakage function are included in
Eq. (2).
LðtÞ is a functional of the initial state j�i and any added

control Hc, the latter generally through incident external
fields. Given a time t, the solution of the variational equa-
tion �LðtÞ ¼ 0 with respect to the state j�i in the absence
of Hc yields, to second order, a self protected state.
Alternatively, solution to this variational equation with
respect to the incident electromagnetic fields for fixed
j�i provides optimal control fields, to second order, to
protect j�i against decoherence. Later in this Letter, we
address optimizations with respect to the control fields for
realistic molecular systems. Optimizations with respect to
j�i are currently under study.
As in all approximation techniques, the utility of the

second-order approximation [Eq. (3)] is examined by com-
parison with exact cases. We consider two examples.
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Example I: Pure leakage.—Consider a pure leakage
case, where the system is a one-dimensional Harmonic
oscillator in which there is no system-bath interaction.
The system is described by HS ¼ !aya and is polarized
by the interaction HI ¼ �ðay þ aÞ � IB, where IB is the
unit operator of a bath and ayðaÞ is a bosonic creation
(annihilation) operator for the harmonic oscillator. For the
case of the ground state j�i ¼ j0i, the exact solution is

bexðtÞ ¼ h0j�SðtÞj0i ¼ expð� 4�2

!2 sin
2 !t

2 Þ. The second-

order solution [Eqs. (4) and (5)] gives the same result.

When j�i ¼ j1i, the exact analytical solution bexðtÞ ¼
ð1� 4�2

!2 sin
2 !t

2 Þ2 expð� 4�2

!2 sin
2 !t

2 Þ, while bðtÞ ¼
expð� 12�2

!2 sin2 !t
2 Þ. In the superposition case of j�i ¼ 1ffiffi

2
p �

ðj0i þ j1iÞ, bðtÞ ¼ exp½� 4�2

!2 ðsin2 !t
2 þ sin4 !t

2 Þ� and

the exact solution bexðtÞ ¼ ½1� 4�2

!2 ð1� �2

!2Þsin4 !t
2 ��

expð� 4�2

!2 sin
2 !t

2 Þ. Their second-order expansions are

all the same and are essentially equal to one another for
�2

!2 < 0:1.

Example II: Spin-bath model within the rotating wave
approximation.—Here, the system Hamiltonian reads
H0 ¼ �	z þ!aya and HI ¼ �ð	þaþ 	�ayÞ, where
	� ¼ ð	x � i	yÞ=2. Let j�i ¼ j0i and let the bath be in
the state ayjVi, where j0i is the spin-down state and jVi is
the vacuum-bath state. Solving the problem exactly gives

bexðtÞ ¼ 1� sin2½t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��!

2 Þ2 þ �2
q

� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��!

2 Þ2þ�2
p . The second-

order solution to the master equation is bðtÞ ¼
expð� 16�2

ð��!Þ2 sin
2 ð��!Þt

2 Þ, which agrees with the exact result
in second order. They can also be shown numerically to be

in good agreement when �2

ð��!Þ2 < 0:1.

Quantum control.—Within the framework outlined here,
the goal of quantum control becomes: given a time t of
interest, we computationally seek the solution of the varia-
tional equation �LðtÞ ¼ 0 with respect to Hc, with the
inclusion of any physical constraints of the control, The
result is the control functional Hcðs0Þ. Note that this ap-
proach does not just optimize CðsÞ itself at time s, but
rather includes the history of the time evolution of CðsÞ.

Although idealized BB control provides a possible
mathematical solution, of LðtÞ ¼ 0, it requires unrealistic
(zero-width) pulses. Hence, our focus is to replace ideal-
ized control by an approximate variational or numerical
solution that minimizes LðtÞ under realistic pulse energy
and pulse width constraints.

Harmonic oscillator coupled to a harmonic bath.—As
an application of this framework, consider as the system
the harmonic approximation (frequency �) to a Morse
oscillator [18,19] for, e.g., molecular iodine, which allows
us to employ a simplifying symmetry. The total

Hamiltonian, where the bath has ‘ oscillators, is H ¼
�ayaþP

‘
j¼1 !ja

y
j aj þ �SB, where B ¼ P

�ð!jÞðaj þ
ayj Þ. The interaction is separable with SðtÞ ¼ e�i�taþ
ei�tay and the bath correlation function is �ðtÞ ¼P

�2ð!jÞ½1þ nð!jÞe�i!jt þ nð!jÞei!jt� where nj ¼

1=½expð�!jÞ � 1�. At low energy, I2 vibrational motion

is harmonic, with � ¼ 213:7 cm�1 and �ð!jÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!j!dð1�e�5Þ

40
‘

q
with !j ¼ � !d

2 lnð1� jð1�e�5Þ
‘ Þ, where !d is

the cutoff frequency at j ¼ ‘.
As an example, consider a superposition of the eigen-

states of the system harmonic oscillator as the state in need
of protection in a bath at room temperature. Such states
would be of interest, for example, in pump-dump coherent
control scenarios [1,2] where this is the initially pumped
state. In that case, one would be interested in maintaining
this state over time scales of 	 700 fs, the system deco-
herence time [19].
Figure 1(a) shows LðtÞ for the parameters shown in the

figure caption. In some cases, Sðs; s� s0Þ may be a func-
tion of (s� s0) only, in which case LðtÞ / t, shown as the
dashed line in Fig. 1(a). This linear dependence on t is
similar to that of the usual decoherence function [15] in the
long time limit. However, at shorter times, the dependence
of Sðs; s� s0Þ on s is seen to contribute non-negligibly,
leading to oscillatory LðtÞ. Below, we will numerically
study the behavior of the leakage function in the short-
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FIG. 1. (a) (upper solid curve) LðtÞ in units of �2 for an
Harmonic oscillator, in the initial state, j�i ¼ 1ffiffi

2
p ðj0i þ j1iÞ

coupled to a bath of 1000 harmonic oscillators at T ¼ 300 K.
Here, !d ¼ 0:01ðfsÞ�1 	 1:5 �. The dashed curve shows the
dominant part, as discussed in the text. The three lower solid
curves show LðtÞ with � ¼ 0, �0 ¼ 
 and � ¼ 


20� , 

10� and 


5� ,

in the order from bottom to top. (b) LðtÞ with � ¼ 

10� and �0 ¼


, but different values of �. Solid curve � ¼ �=5; Dashed
curve: � ¼ �=2; Dotted curve: � ¼ �. (c) LðtÞ with � ¼ 


10�

and � ¼ �
2 but different pulse intensities, �0 ¼ 


10 ,


5 ,



2 from top

to bottom. (d) two lower curves, LðtÞ with �0 ¼ 
=100, � ¼
�0=100 (�0 ¼ �0

10� ) and �0 ¼ 
=10 and � ¼ �0=10 all with � ¼
�=2. They have the same value of�c. The upper curves have the
same values of �0 and � but different signs of �0.
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time region to determine the extent to which leakage can be
controlled.

Control.—Physically, the origin of the control is that the
frequency of the system (here, an harmonic oscillator) is
periodically, dynamically, Stark shifted by the alternating
field. To this end, we employ the realistic control
Hamiltonian HSðtÞ ¼ ½�þ fðtÞ�aya, which results from
strong laser pulses acting on electrons that induce an addi-
tional time-dependent nuclear potential. We model the
control function as a periodic rectangular interaction:
fðtÞ ¼ 0 for regions other than n���< t < n�, n inte-
ger. Inside these regions, fðtÞ is defined so that �0 ¼R
�
��� fðtÞdt. That is, for nonzero �, fðtÞ ¼ �0=� over

the control interval, and for � ¼ 0, fðtÞ ¼ �ðt� n�Þ.
The functional form contains three main control parame-
ters: the time interval �, the pulse width �, and the inter-
action intensity �0. For comparison with realistic pulses,
we show LðtÞ with ideal impulsive phase modulation (� ¼
0) in the three lower curves in Fig. 1(a). Clearly, the shorter
the control interval, the better the control.

Figure 1(b) shows LðtÞ with fixed � and �0, but with
different pulse widths �. The results show that the quality
of the control is only weakly dependent on the pulse width.
For example, the control is excellent even if the width of
the pulse is equal to the control interval �. In this case, the
control is equivalent to adding a constant frequency �c ¼
�0=� to the harmonic oscillator frequency, i.e., shifting the
system frequency by �=� ¼ 1 means shifting the system
frequency to (�þ�c). If ð�þ�cÞ>!d (the cutoff
frequency of the bath), which is the case in this figure,
the function Sðs; s� s0Þ oscillates faster than the rate of
decay of the bath�ðsÞ. The integral, CðsÞ, of the product of
the two functions generally oscillates around zero so that
LðtÞ is reduced at any time t. The way to achieve this goal
(e.g., see Ref. [13]) is to increase the interaction of the
pulse �0 or decrease the pulse width � in order to increase
�c ¼ �0=�.

The dependence on the intensity is also of interest, as
shown in Fig. 1(c). The quality of control is seen to
decrease with decreasing intensity.

Finally, we consider the effects due to the different signs
of �0. The two lower curves in Fig. 1(d) correspond to
results for different �0 (or �) but the same �c ¼ �0=�.
The upper curves have the same values but different signs.
They show similar suppression, implying that the quality of
suppression depends primarily on �c. Hence, the above
discussions are also valid for the negative values of �0 as
shown in the two upper curves.

For the case of a diatomic molecule, we note that the ac
Stark effect induced by an external laser field interacting
with the electrons decreases (or increases) �, an effect
termed ‘‘bond softening (or hardening).’’ Ab initio calcu-
lations [20] show that, in the softening case, the frequency

can be reduced by 10% forHþ
2 in a strong laser field. In the

case of hardening, if the frequency can be enhanced by p
percent so that if ð1þ pÞ�>!d, then leakage control will
be effective. This is expected to be a considerable technical
challenge.
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