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It is a common belief that power-law distributed avalanches are inherently unpredictable. This idea

affects phenomena as diverse as evolution, earthquakes, superconducting vortices, stock markets, etc.,

from atomic to social scales. It mainly comes from the concept of ‘‘self-organized criticality’’ (SOC),

where criticality is interpreted in the way that, at any moment, any small avalanche can eventually cascade

into a large event. Nevertheless, this work demonstrates experimentally the possibility of avalanche

prediction in the classical paradigm of SOC: a pile of grains. By knowing the position of every grain in a

two-dimensional pile, avalanches of moving grains follow a distinct power-law distribution. Large

avalanches, although uncorrelated, are on average preceded by continuous, detectable variations in the

internal structure of the pile that are monitored in order to achieve prediction.
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In the last two decades much effort has been devoted to
understanding the ubiquity of scale invariance in nature.
The best known attempt so far, although controversial, has
been self-organized criticality (SOC) [1,2] in which the
competition between a driving force that very slowly in-
jects energy and a dynamics of local thresholds, can drive
the system into a critical state where a minor perturbation
can trigger a response (avalanche) of any size and duration.
A major goal of these kinds of models is to gain under-
standing of processes ruled by scale invariance that even-
tually have catastrophic events (evolution [3], earthquakes
[4,5], stock markets [6], solar flares [7], superconducting
vortices [8,9], etc), in order to predict them. Since unpre-
dictability is an essential feature of critical processes
evolving through power-law distributed avalanches, the
possibility of prediction seems unlikely. However, predic-
tion is —in principle— possible, because the system is not
at, but just close to, the critical state [10,11]. Some cellular
automaton models of earthquakes have analyzed the pre-
dictability of very large avalanches (responsible for the
cutoff on a power-law distribution) [12] and also precur-
sors of large events have been reported in dissipative or
hierarchical lattices [13,14]. However, no experimental
results have been presented so far concerning the predic-
tion of avalanches inside a regime of power-law distributed
events, in slowly driven systems, and still many researchers
think that if earthquakes correspond to a SOC process, they
are inherently unpredictable [15,16].

We present an experiment where avalanches display a
power-law distribution with an exponent equal to�1:6 and
where precursors to large events have been found. We use a
setup similar to that reported by Altshuler et al. [17] where
SOC behavior was observed. However, the present experi-
ment is the first one having single grain resolution in the

measurement of the avalanches that take place not only at
the free surface [18,19] or falling off the system [17,20–
22], but also in the bulk of the pile. A base, consisting of a
60 cm long row of 4� 0:005 mm steel spheres separated
from each other by random (0, 1, 2 or 3 mm) spacing, is
glued to an acrylic surface and sandwiched between two
parallel vertical glass plates 4.5 mm apart. The same steel
beads are delivered one by one from a height of 28 cm
above the base and at its center, resulting in the formation
of a quasi-two-dimensional pile. The extremes of the base
are open, leaving the beads free to abandon the pile. After a
bead is delivered, the system waits for a few seconds in

FIG. 1 (color online). Distribution of avalanche size (open
circles). These points have been averaged with a logarithmic
binning (diamonds). Avalanches are classified as small (S),
medium (M), large (L), and very large (XL) considering loga-
rithmic bins. The percentage of every type of avalanche related
to the total number of dropping events is also displayed.
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order to guarantee that all the relaxation effects in the pile
are finished. The pile is then recorded with a Canon D20
digital camera at a resolution of 21 pixels/bead diameter,
followed by the dropping of a new bead. One experiment
contains more than 55 000 dropping events with a total
duration of more than 310 hours. The first 4500 events
before the pile reaches a stationary state are not included in
the statistics. The average number of beads in the pile is
3315. By processing the images, the centers of all the beads
are found and the avalanche size is defined as the number
of beads moving between two consecutive dropping events
(we include here the beads that fall off the pile). We have
assumed that one bead has moved when the coordinates of
its center, ‘‘projected’’ on the consecutive image, do not in-
dicate any neighboring center at a distance less than or
equal to 1=7 of the bead diameter. The distribution of ava-
lanche sizes is displayed in Fig. 1. Avalanches span over
three decades in a log-log plot and follow a power law in
almost all of this range. The graph can be divided (without
losing generality) in three equally spaced zones. So, in con-
sidering a distribution that spans over 3n decades, ava-
lanches smaller than n are considered small, those lying
between n and 2n are medium, and those greater than 2n
are large. We focus our attention on the large ones (size>
100) and we look for precursors in the structure of the sys-
tem. The very large avalanches (size> 316), which have a
very small probability of occurrence, are also analyzed.

The temporal autocorrelation of large avalanches reads
as

CAðtÞ ¼
P½sð�Þsð�þ tÞ� � hsð�Þi2P½sð�Þ � hsð�Þi�2 ; (1)

where sð�Þ equals unity if the avalanche is large, and zero
in all other cases. The unit of time corresponds to one
dropping event, also called a step. The uncorrelated char-
acter of large (L) avalanches is displayed in Fig. 2(a). The
waiting time between them follows an exponential distri-
bution [Fig. 2(b)]. This implies the presence of a character-
istic waiting time, equal to 26� 2 steps, indicating the
average time between large events. Very large avalanches
(XL) behave in a similar way, with a characteristic waiting
time equal to 132� 9 steps. Concerning predictability, it is
interesting to note that the earthquake scenario is better
than the one presented here, in the way that the waiting
times between events follow a power-law distribution,
allowing some global, or long term, forecast [23,24]. Up
to this point in the analysis, we have a self-organized
system with uncorrelated avalanches whose sizes follow
a power-law distribution. So it seems impossible to predict
the moment when a large avalanche is going to happen.
However, a slight decay larger than the background noise
can be noticed for the first 20 steps in the inset of Fig. 2(a).

FIG. 2 (color online). Analysis of the avalanche time series.
(a) Autocorrelation of the large avalanche time series.
(b) Distributions of waiting time between large avalanches.
(c) Average avalanche size around a large avalanche.

FIG. 3 (color online). Internal structure of a pile. Close-up of a
portion of the pile with a reflection (below) in the space of the
shape factor � . After finding the center of the beads and making a
voronoi triangulation for the internal ones (i.e., excluding those
in the base and those joined with a line at the pile’s surface) we
define � ¼ C2=4�S, where C is the perimeter and S the area of
each voronoi cell. The shape factor � is a measure of the local
disorder in the pile [for example for a regular hexagon � ¼ 1:103
(highest order in the pile) and for a square � ¼ 1:273]. Inset: The
whole pile, where a rectangle indicates the close-up area. Notice
the small values of � at the center of the pile, indicating
hexagonal packing which results from the ‘‘thermal’’ effect of
beads being added from above.
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This is an indication of a time clustering of avalanches, and
a steeper slope mc for the small values of the waiting time
in the inset of Fig. 2(b) is also a sign of it. This temporal
clustering is analyzed in Fig. 2(c): around a large event
there is an average increment of the avalanche size. The
best fit of it corresponds to power laws (insets) for both
‘‘foreshocks’’ and ‘‘aftershocks’’. The exponents of the
power laws are very low (�0:13 and �0:12), making it
impossible to predict main shocks by analyzing possible
foreshocks. Any comparison with the Omori law [25] for
earthquakes can be done just qualitatively due to the fact
that in our experiment there is only one avalanche per unit
time.

To predict, in the short-term, when a large avalanche is
going to happen, we analyze the corresponding changes in
the internal structure of the pile. As the position of the
centers of all the particles at every step of the experiment is
known, we are able to define several structural variables
and analyze how they evolve during time, particularly in
the neighborhood of a large avalanche. In this Letter we
focus our study on just two: the size of the system, defined
as the number of beads in the pile, and the shape factor �
[26], which is a measure of the local disorder in the system
(Fig. 3). It is expected that during a big avalanche, some of
the grains will eventually abandon the pile, and therefore
the size of the system should, on average, decrease. If so,
before a large event, the pile, and thus the amount of energy
ready to be released during the avalanche has to be large.

The temporal correlation function

CðtÞ ¼
P½sð�Þxð�þ tÞ� � hsð�Þihxð�ÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP½sð�Þ � hsð�Þi�2 P½xð�Þ � hxð�Þi�2

q ; (2)

where xð�Þ corresponds either to the temporal series of the
size of the pile [Fig. 4(a)] or to the average shape factor
[Fig. 4(b)], displays the behavior of these structural varia-
bles in the vicinity of a large avalanche. The number of
beads in the pile [Fig. 4(a)] behaves as ‘‘expected’’ and
approximately 50 dropping events (steps) before a large
avalanche the size of the pile, on average, suffers a slight
increment and then a continuous decrement (foreshocks
zone) until the avalanche takes place. During the avalanche
the pile’s size jumps down. It then continues decreasing for
around 25 steps (aftershocks zone), but starts to grow again
soon after due to the addition of new grains from the top.
The continuous variation displayed by the disorder of the
pile before a large avalanche is much clearer [Fig. 4(b)]
and approximately 50 steps before a large event, the aver-
age disorder continuously increases until the avalanche
takes place. Then the pile reorganizes itself, but it gets
trapped in an intermediate level of disorder. In the after-
shocks zone the disorder increases, and after that, the pile
slowly evolves into more organized states. Even locally it
can be noticed as a very good match between the zones
involved in large avalanches, and the increase of disorder
before the avalanche takes place [Figs. 4(c) and 4(d)]. The

FIG. 4 (color). Correlation between avalanches and internal structure. (a) Temporal correlation between the large avalanches and the
size of the system. (b) Temporal correlation between the large avalanches and the average shape factor � . (c) Difference between the
local averages of the � values at one step before a large avalanche and at 50 steps before a large avalanche. Red indicates that the
disorder increases, blue an increase in the order, and green displays no variations in � . A cursory inspection shows that the red color
predominates over the blue . The cumulative number of sites involved in large avalanches is displayed at (d). The match between the
red color in (c), and the landscape in (d), corroborates that on average, the pile suffers an increment of the disorder before a large
avalanche takes place.
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observed asymmetry is a consequence of a slight tilt of the
ordered (hexagonal) block at the center of this particular
pile, favoring the movement of grains to the left of the
system. The same general behavior of structural changes in
the pile preceding large events has been observed in other
piles developed under similar conditions.

In order to try an actual prediction, we define an alarm
for an upcoming large (L) event. The alarm is in its on state
when the differences of the spatial average of the shape
factor between the current time and 50 steps before the
current time is larger than zero; i.e., if �ðtÞ> �ðt� 50Þ
then we predict an avalanche of size L at the time tþ 1.
After 50 000 events, the alarm is on 51� 3% of the total
time, and 62� 4% of the large avalanches take place
during this situation. The same analysis for the very large
(XL) avalanches gives 64� 7% of the events happening
under an alarm that is on 51� 3% of the total time. The
errors have been calculated by dividing the data in 10
different portions of 5000 events each. The mean value
and the standard deviation are the values reported before.
Perhaps this 62% is not a very impressive percent (in a
random process 50% of the events will occur under an
alarm that is on 50% of the time), but the first criterion we
have used for turning the alarm on is very simple. If we use
a bit more sophisticated criterion, better results are ob-
tained. For example, taking into account the existence of
aftershocks, we can define a second alarm that is turned on
immediately after a large (L) event and has a duration of 12
steps. If the system is under an alarm (either this second
alarm or the original one) 50:0� 0:1% of the total time (in
order to get this value the thresholds of differences of shape
factors in the original alarm have to be readjusted), 65�
4% of large avalanches take place when the alarm is on.
The results given by our naı̈ve criterion for predicting
avalanches, based only on Fig. 4(b), are somehow poor.
However, they are able to demonstrate that by means of the
analysis of the correlation between large avalanches and
global structural variables in the system, it is possible to
achieve some predictability. We also believe that this per-
centage of success can be increased by adding more infor-
mation [for example, the size of the pile: Fig. 4(a)], and by
using smarter techniques such as pattern recognition tools.

We have presented a self-organized pile of beads that
evolves through uncorrelated avalanches distributed fol-
lowing a power law, and where the analysis of the time
series of events does not give enough information for
developing any forecast of large events by itself.
However, on average, some global structural variables dis-
play continuous, significant and detectable variations pre-
ceding large events. A similar behavior has been noticed in
other numerical models of earthquakes and supercon-
ducting vortices [27]. This indicates that, in these self-
organized situations, large avalanches require the
building-up of certain conditions in the structure of the
system. By monitoring this developing process these large
events can, in principle, be forecasted.
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