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Recently, it was shown that strongly correlated metallic fermionic systems [Nature Phys. 3, 168 (2007)]

generically display kinks in the dispersion of single fermions without the coupling to collective modes.

Here we provide compelling evidence that the physical origin of these kinks are emerging internal

collective modes of the fermionic systems. In the Hubbard model under study these modes are identified

to be spin fluctuations, which are the precursors of the spin excitations in the insulating phase. In spite of

their damping, the emergent modes give rise to signatures very similar to features of models including

coupling to external modes.
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The description of nascent collective modes which
emerge from elementary excitations on varying a control
parameter g is an intensely studied field of research. The
difficulty relies on the fact that in one limit of g the
elementary excitations dominate while in the other limit
the collective modes dominate. In the vicinity of the tran-
sition or around the crossover necessarily both degrees of
freedom need to be taken into account so that the interplay
of both kinds of excitations is crucial. No simple theory
assesses this interplay.

Here we will focus on strongly correlated electronic
systems and especially on the metal-insulator transition
induced by a repulsive interaction U on a lattice with a
commensurate number of electrons per site. The simplest
case is a local interaction with one electron per site on
average [1]. For low values of U the electrons move
through the lattice so that the system is metallic. For large
values of U the hopping is blocked and the system is
insulating with frozen charge degree of freedom.
However, the spin dynamics is still active. In the leading
order in t=U (t, the hopping matrix element), this dynamics
is captured by a Heisenberg model [2]. The collective
modes are the spin excitations built from bound electron-
hole pairs.

When the system is still metallic, but close to its insu-
lating regime, we intend to understand how the emergent
spin modes influence the electronic quasiparticles. This
issue is important to many strongly correlated systems.
One prominent example is high-temperature superconduc-
tivity where a large number of theories explains the attrac-
tive interaction between charge carriers by the interplay
with spin fluctuations. One line of argument links the kinks
that are observed in the dispersion of the fermionic holes
(see for instance [3–7]) to the interaction with bosonic
modes. This is the usual reasoning for phonons coupled
to electrons [8]. Other bosonic modes, however, will en-

gender the same sort of kinks, for instance plasmons [9]. In
the high-Tc materials, spin fluctuations have an important
influence on the quasiparticles; see, e.g., Ref. [10]. They
are likely candidates for the bosonic modes; see, e.g.,
Ref. [11] where this is worked out in the fluctuation-
exchange approximation.
Byczuk et al. [12] recently showed by a sophisticated

analysis of the equations of dynamic mean-field theory
(DMFT) [1] that kinks in the electronic dispersion are a
generic feature of strongly correlated electronic systems
where the repulsive interaction is of similar strength as the
kinetic energy. They stress that no coupling to a bosonic
mode is needed. Indeed the model they study does not
comprise any explicit bosonic mode; it is a fermionic
Hubbard model. For particle-hole symmetric models domi-
nated by the local self-energy the position of the kink was
related by Byczuk et al. [12] to the quasiparticle weight

!kink ¼ ð ffiffiffi
2

p � 1ÞZD: (1)

In the present work it is our aim to elucidate the physical
origin of the kinks. We provide evidence that the kinks
result from the coupling to the bosonic resonance which is
the precursor of the spin modes in the insulator. Thus we
conjecture that the kinks in strongly correlated fermionic
systems are induced by coupling to internal bosonic
modes. The signature is very similar to the coupling to
external bosons such as phonons [8]. Our finding also sheds
light on signatures of spin modes in the electronic disper-
sions of high-temperature superconductors.
Our computation is also based on DMFT. This approach

reduces the extensive lattice problem to a self-consistency
problem involving a single-impurity Anderson model
(SIAM) [1]. The latter can be viewed as an interacting
site coupled to a semi-infinite chain of noninteracting
fermions [13,14] , which is solved by dynamic density-
matrix renormalization (D-DMRG) [15,16]. This combi-
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nation of D-DMRG and DMFT represents a powerful tool
for investigating the T ¼ 0 one-particle propagators of
interacting lattice models [17–20]. Its particular merit is
to have a well-controlled energy resolution over the whole
energy range [15,21].

The model under study is the simplest, displaying an
interaction driven metal-insulator transition, namely, the
half-filled Hubbard model

H ¼ �t
X

hi;ji;�
ĉyi;�ĉj;� þU

X

i

ðn̂i;" � 1=2Þðn̂i;# � 1=2Þ:

(2)

At low values of U the ground state is metallic; above
Uc2 � 3D the insulating phase becomes the ground state
[1,19,22,23].

Our analysis is facilitated by the direct numerical cal-
culation of the local proper self-energy �ð!Þ. This is done
with the help of the improper self-energy

Qð!Þ :¼ hhd̂�ðn̂�� � 1=2Þjðn̂�� � 1=2Þd̂y�ii; (3)

where we use the notation hhAjBii for the Fourier transform
of the time-dependent fermionic Green function
�ihfAðtÞ; Bð0Þgi. If one considers doping, the term 1=2 in
(3) is to be replaced by the average filling per site.

Starting from the result �ð!Þ ¼ UFð!Þ=Gð!Þ by Bulla
et al. [24], we apply the Liouville operator in the equations
of motion once more [25], yielding Fð!Þ ¼ UQð!ÞG0ð!Þ
wherein Fð!Þ :¼ hhd̂�ðn̂�� � 1=2Þjd̂y�ii. Substituting
Fð!Þ by UQð!ÞG0ð!Þ and expressing Gð!Þ by Dyson’s
equation G�1ð!Þ ¼ G�1ð!Þ ��ð!Þ yields

�ð!Þ ¼ U2Qð!Þ=ð1þU2Qð!ÞG0ð!ÞÞ: (4)

This expression is advantageous to use for small to mod-
erate values of U & 2D where the computation of �ð!Þ
from the difference between the inverse bare and full
propagators is numerically not reliable [20].

Figures 1 and 2 display the generic behavior found forU
not too far from the metal-insulator transition. Figure 1(a)
shows that a kink in the real part of a self-energy is linked
to a troughlike feature in the imaginary part. This is a
purely mathematical fact stemming from Kramers-
Kronig relation. Figure 1(b) depicts the real and imaginary
parts for a realistic self-energy as it results from the DMFT
calculation. The kinks in the real part and the trough in the
imaginary part are clearly discernible though not as neatly
as in the analytic function of Fig. 1(a). This comes from
small spurious wiggles in �Im� resulting inevitably from
the deconvolution of the DMRG raw data [26].

In Fig. 2 we address the physical meaning of the trough-
like feature. There are two ways to understand it based on
Fermi-liquid theory.

(i) The trough itself, ranging approximately from�0:1D
to 0:1D, is fitted by a narrow curve (dash-dotted line).
Outside the trough �Im�ð!Þ is then much lower than
the extrapolated fit. Since �Im�ð!Þ is the decay rate for

the quasiparticles, this would be much lower relative to its
extrapolated value. We do not see a good reason for such a
decrease of the decay because the decrease due to reduced
phase space for three quasiparticles should occur beyond
about 3 times ZD=2, which is � 0:4D [19,20,22], i.e.,
significantly larger than the extension of the trough.
(ii) The Fermi-liquid theory extends to higher values, for

instance � 0:5D as is still consistent with the above crude
estimate, so that fits such as the dashed curve in Fig. 2 are
justified. Indeed, the fit works very nicely with a moderate
coefficient for the quartic term. This view implies that
around 0:15D additional decay becomes possible, which
extends up to 0:4D. An additional decay channel is well
possible. It sets in only above a certain energy because
excitations of a certain minimum energy are involved.
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FIG. 1 (color online). Panel (a) illustrates the relation between
real and imaginary parts for an analytic ansatz of the real part

with a kink: Re� ¼ �A2

2
ð2!þj!�aj�j!þajÞð!2�b2Þ

A2þ!4 , with A �
0:62177D, a ¼ 0:15D, b ¼ 0:7D; the imaginary part is com-
puted by the Kramers-Kronig relation. Panel (b) shows the real
and imaginary parts of �ð!Þ in DMFT at U ¼ 2:0D.
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FIG. 2 (color online). �Im�ð!Þ on a larger scale with two
Fermi-liquid fits. The shaded region illustrates additional decay
indicated by the arrows.
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So, among the two hypotheses we favor the second one.
It explains also rather naturally why the quadratic coeffi-
cient is so low in spite of the very narrow trough.

We are aware that from a puristic point of view on
Fermi-liquid theory its applicability ends at the borders
of the narrow trough as described above in (i). We do not
claim that this view is invalid. But we advocate the alter-
native view (ii) because it provides an intuitive way to
understand the self-energy behavior at low energies in
terms of quasiparticles coupled to emergent collective
modes. This coupling is the origin for the deviations
from the dashed curve in Fig. 2. The latter is regarded as
an effect on top of the underlying Fermi-liquid description
resulting from the additional decay channel. This is in-
duced by scattering from an emergent collective mode
which has to be identified.

Given the fact that it becomes important only for finite,
though small energies, we aim for a mode that is dominated
by such a finite, though small energy. Furthermore, it exists
only close to the metal-insulator transition. We shall see
that its energy decreases towards the transition U ! Uc2.
Because the insulator is a paramagnet with disordered local
spin moments [1,27], a natural candidate is the emergent
spin fluctuations.

In the framework of the limit of infinite dimension d !
1 the propagation of a collective mode from site i to site j

scales as d�ji�jj, where j � � � j stands for the taxi cab metric.
Hence the collective modes are almost dispersionless and
thus local. Only for particular wave vectors, which are of
measure zero, can a nonlocal propagation make itself felt;
see, e.g., Ref. [28]. In the complex diagrams describing the
single particle motion the propagation of collective modes
(particle-hole pairs) occurs in such a way that it is summed
over. No particular momenta of measure zero matter. Thus
it is fully sufficient to investigate the local response.

In Fig. 3 the local spin susceptibility �spinð!Þ is shown,
which we have computed for positive frequencies denoting

it by �>
spinð!Þ. It is obtained from the effective SIAM

occurring in the self-consistency loop of the DMFT
[1,20]. In the SIAM it is determined as the local suscepti-
bility at the head of the chain. Numerically we employ
again D-DMRG for some broadening �, which is then
eliminated by deconvolution [26]. This deconvolution
gives rise to some uncertainty in the shape of the frequency
dependence of the susceptibility.
The excitation operator is 2Sz ¼ n̂" � n̂# at the chain

head. A strongly pronounced peak catches the eye. Its peak
energy moves towards ! ¼ 0 for U ! Uc2. In parallel, its
height increases such that its total weight tends to a finite
value [27]. This peak is the precursor of a � peak at zero
energy in the paramagnetic insulator. There it reflects the
fact that a spin can be rotated without any cost of energy.
Still in the metallic phase, the peak is a resonance made
from an almost bound quasiparticle and a hole. It has some
width because it may decay into scattering states of its
constituents.
From the data for Im�>

spin we deduce the peak position

by fits assuming two Lorentzians to account for the asym-
metry of the peak shape. The Lorentzians are multiplied by
factors tanhð!=!0Þ to account for the linear vanishing of
Im�>

spinð!Þ for ! ! 0. The relevant peak position is the

one of the Lorentzian with more weight. The error bars
account for the uncertainties related to the details of the fit
procedure, e.g., for U � 1:9D where the weight appears to
be distributed equally over both Lorentzians.
The results are compared in Fig. 4 with the kink posi-

tions which were determined in several ways. We use
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FIG. 3 (color online). Deconvolved imaginary part of the local
spin susceptibility at positive frequencies for various interactions
U in the metallic phase.
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FIG. 4 (color online). Kink positions !kink as derived from the
quasiparticle weight Z via Eq. (1); Z is found from either the
propagator G [19] or the self-energy �ð!Þ in Z ¼ ð1�
@!�ð0ÞÞ�1. Most directly, a fit A!þ Bðj!�!kinkj � j!þ
!kinkjÞ to Re�ð!Þ is used for !kink; !kink is compared to the
energies where �>

spin shows a peak at low j!j.
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Eq. (1) to deduce the kink position from Z, which in turn is
determined by either Z ¼ ½1� @!�ð0Þ��1 or Z�1 ¼
D2@!Gð0Þ=2 [19]. Or the kink position is determined
directly by a fit to Re�ð0Þ (see caption of Fig. 4). The
three ways to find the kink positions agree very well
providing consistent data.

The peak positions agree remarkably well with the kink
positions. For large values of U, in particular, the agree-
ment is striking. It is for these larger values U * 2D that
both the kink and the peak in the susceptibility are clearly
discernible and well defined. So we deduce that the addi-
tional decay channel seen in Fig. 2 results from the exci-
tation of the spin resonance by the propagating single
fermionic quasiparticle. This finding strongly supports
our claim that the kink is in fact due to emergent internal
modes. Here these modes are the spin fluctuations which
develop already in the metallic phase.

Thereby, an intuitive physical picture of the origin of the
kinks is found. One major advantage of this picture is that
one can transfer it to finite dimensions where the collective
modes are dispersive so that the momentum dependence
matters. Kinks are to be expected where momentum and
energy conservation for the scattering of a quasiparticle
from a collective mode is fulfilled.

In conclusion, we have provided compelling evidence
for a link between the kinks in fermionic dispersions in
strongly correlated systems and emergent internal collec-
tive modes, spin fluctuations in particular. We agree com-
pletely with the phenomenon established by Byczuk et al.
[12]. But our physical picture of the phenomenon is differ-
ent because we view the kinks as the consequence of
inherent bosonic modes. An important concomitant aspect
is that the Fermi-liquid theory does not break down already
at the scale of!kink. It extends to about 2ZD, where Z is the
quasiparticle weight.

Our finding provides important information on the pos-
sible interpretation of kinks in electronic dispersions in
many strongly correlated systems and in cuprate systems
as they occur in high-temperature superconductors in par-
ticular. Such kinks can be the consequence of emerging
bosonic modes, i.e., resonances even if these are still
strongly damped. For instance, qualitative support is pro-
vided to results based on the fluctuation-exchange approxi-
mation for cuprates [11]. Moreover, the coupling between
the single particles and the collective modes is generically
substantial. Certainly, further investigations, for instance
away from half filling, are called for.

We would like to thank M. Karski for providing data, H.
Eschrig, M. Kollar, I. A. Nekrasov, and D. Vollhardt for
helpful discussions, and the Heinrich Hertz-Stiftung NRW
for financial support.

*carsten.raas@tu-dortmund.de
†On leave from Lehrstuhl für Theoretische Physik I,

Technische Universität Dortmund, Otto-Hahn Straße 4,

44221 Dortmund, Germany.
[1] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[2] A. B. Harris and R.V. Lange, Phys. Rev. 157, 295 (1967).
[3] A. Lanzara et al., Nature (London) 412, 510 (2001).
[4] S. V. Borisenko et al., Phys. Rev. Lett. 96, 117004

(2006).
[5] A. A. Kordyuk et al., Phys. Rev. Lett. 97, 017002 (2006).
[6] D. S. Inosov et al., Phys. Rev. B 75, 172505 (2007).
[7] T. Valla, T. E. Kidd, W.-G. Yin, G.D. Gu, P. D. Johnson,

Z.-H. Pan, and A.V. Fedorov, Phys. Rev. Lett. 98, 167003
(2007).

[8] D. J. Scalapino, in Superconductivity, edited by R.D.

Parks (Marcel Dekker, New York, 1969), p. 449.
[9] A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E.

Rotenberg, Nature Phys. 3, 36 (2007).
[10] H. Guo and S. Feng, Phys. Lett. A 355, 473 (2006).
[11] D. Manske, I. Eremin, and K.H. Bennemann, Phys. Rev.

Lett. 87, 177005 (2001).
[12] K. Byczuk, M. Kollar, K. Held, Y.-F. Yang, I. A. Nekrasov,

T. Pruschke, and D. Vollhardt, Nature Phys. 3, 168

(2007).
[13] A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, Cambridge, 1993).
[14] G. S. Uhrig, Phys. Rev. Lett. 77, 3629 (1996).
[15] C. Raas, G. S. Uhrig, and F. B. Anders, Phys. Rev. B 69,

041102(R) (2004).
[16] A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I.
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