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We study the spatial decay of electron coherence due to electron-electron interaction in a finite-length

disorder-free quantum wire. Based on the Luttinger liquid theory, we demonstrate that the coherence

length characterizing the exponential decay of the coherence can vary from region to region, and that the

coherence can even revive after the decay. This counterintuitive behavior, which is in clear contrast to the

conventional exponential decay with single coherence length, is due to the fractionalization of an electron

and the finite-size-induced recombination of the fractions.
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Introduction.—Quantum coherence of a particle wave is
responsible for various quantum phenomena. Conven-
tionally, the coherence of a particle decays exponentially
with time due to scattering with other particles. This decay
‘‘law’’ was observed experimentally in electron interfer-
ometers [1,2], where the interference visibility decays as

e�L=‘� with the length L of the interference path. Here
constant ‘� is often called the coherence length, since the

visibility represents how well the coherence is preserved
during the electron propagation along the path [3].

Electron-electron interaction is known as a dominant
scattering source that induces the decay of the electron
coherence (dephasing) at low temperature. The interaction
generates nontrivial effects [4–8]. For instance, when an
electron is injected to an infinitely long one-dimensional
wire, the interaction splits it into two fractional charges [4].
The charge fractionalization was experimentally detected
[5], and is responsible [6] for the exponential decay of the
coherence in the infinite wire.

In this Letter, we consider a finite one-dimensional wire
and find surprising deviations from the infinite case in the
temperature regime where the thermal energy is compa-
rable to or larger than the discrete level spacing due to the
finite-size effect. The coherence length characterizing the
exponential decay of the coherence can vary from region to
region, even though the wire is homogeneous, and more-
over the coherence can even revive after the decay. We
attribute this counterintuitive behavior to the interaction-
induced fractionalization of electrons [4,5] and to the
separation and recombination of the fractions in the
finite-length wire. This demonstrates that electron-electron
scattering does not occur in a random phase-averaging
fashion, and clarifies the nature of the coherence of inter-
acting particles.

Interferometer.—We consider an electron interferometer
(Fig. 1), in which a disorder-free wire of length L weakly
couples to two bulk electrodes at two positions xi and xe
via electron tunneling. For simplicity, we ignore the
spin degree of freedom for a while, and neglect the inter-
action in the electrodes. The total Hamiltonian of the

setup is written as H ¼ Hwire þHL þHR þHt, where
HLðRÞ is the Hamiltonian of the noninteracting left (right)

electrode, Ht ¼ ½�1�
yðxiÞ�Lð0Þ þ �2�

y
Rð0Þ�ðxeÞ þ

�3�
y
Rð0Þ�Lð0Þ þ H:c:� describes the tunneling, �LðRÞð0Þ

is the electron field operator at the tunneling point of the
left (right) electrode, and �1, �2, �3 are the tunneling
amplitudes along the interference loop. The electron field
operator �ðxÞ at position x in the wire satisfies �ð0Þ ¼
�ðLÞ ¼ 0 at the wire boundaries. The Hamiltonian Hwire

of the wire will be given later.
In the setup, under bias voltage V, electron current flows

between the electrodes via two paths, the direct tunneling
(�3) and the elastic cotunneling (�1�2) through the wire,
which cause the interference. We derive the interference
parts Iint of the current, Iintðxi; xeÞ / Re½�1�2�

�
3� �

P
R
d!d!0Aðxi; xe;!Þf½fLð!0Þ � fRð!0Þ�=ð!0 �!Þg, by

using the Keldysh Green function [9,10] and retaining
the perturbation series up to the lowest order in the tunnel-
ing amplitudes (e.g., for �1 � �2; �3). Here P means the
principal value of the integral, fLðRÞ is the Fermi distribu-

tion function of the left (right) electrode, and Aðxi; xe;!Þ is
a propagator through the wire (introduced below). The
above derivation is valid for any specific form of Hwire.
In the linear response regime, we obtain the interference

part Gint � dIint=dV of the differential conductance,

FIG. 1 (color online). Electron interferometer, consisting of a
disorder-free one-dimensional wire of length L and two elec-
trodes. Electron tunneling occurs between the left (right) elec-
trode and the injection position xi (extraction xe) of the wire, and
between the electrodes; see dashed arrows.
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Gintðxi;xeÞ/Re½�1�2�
�
3�
Z 1

0
dtFTðtÞIm½Aðxi;xe;tÞ�: (1)

Here Aðxi;xe;tÞ� h�yðxi;0Þ�ðxe;tÞþ�ðxe;tÞ�yðxi;0Þiw
is the Fourier transform of Aðxi; xe;!Þ and represents the
electron propagation amplitude in the wire from xi to xe
during the time interval t, and h� � �iw denotes the average
over the equilibrium states of the wire for �1 ¼ �2 ¼ 0.
The weighting factor, FTðtÞ ¼ �kBTt=½@ sinhð�kBTt=@Þ�,
which smears out the interference, comes from the ther-
mal distribution fL=R of electrons in the electrodes and

from the elastic cotunneling weight 1=ð!0 �!Þ; kB is the
Boltzmann constant, T is the temperature, and @ is the
Planck constant divided by 2�. The thermal smearing is
more pronounced for longer t, as FTðtÞ decays rapidly as

e��kBTt=@ for t � @=ðkBTÞ.
All the interaction effects on the coherence are con-

tained in Aðxi; xe; tÞ. We consider a short-range repulsive
interaction. We evaluate A (thus Gint) by using the boson-
ization technique [11–13], a reliable nonperturbative treat-
ment in the low energy regime. After the bosonization [12],

the Hamiltonian of the wire becomes Hwire ¼
�
P

q>0nqb
y
qbq þ @�vN2=ð2gLÞ, where the boson operator

byq (½bq; byq0 � ¼ �q;q0) creates a plasmon with wave vector

q ¼ �nq=L (nq ¼ 1; 2; . . . ) and the operator N counts the

number of excess electrons in the wire. Here � ¼ �@v=L is
the plasmon level spacing, v ¼ vF=g is the plasmon
propagation velocity, vF is the bare Fermi velocity, and g
is the Luttinger parameter describing the interaction
strength; g ¼ 1 in the noninteracting case and g decreases
toward 0 for more repulsive interaction. The first term of
Hwire comes from the plasmon excitations, while the sec-
ond comes from the zero-mode fluctuations.

Revival of coherence and multiple coherence lengths.—
At temperature kBT * � (the range we focus on), one
might expect that the electron coherence in the finite
wire shows the same exponential decay as in an infinite
wire [6], as the finite level spacing � is masked by kBT.
However, our result (Fig. 2), obtained from the bosoniza-
tion and Eq. (1), shows that finite-size effects persist even
in this relatively high temperature regime: Although Gint

follows the exponential decay form e�jxe�xij=‘� , the coher-
ence length ‘� changes from region to region. Moreover

Gint can even have a peak at a special position xe ¼ L� xi,
showing the revival of the coherence.

An insight into this striking behavior can be obtained
from the bosonization form of the electron field operator
�ðxÞ. For this purpose, we decompose �ðxÞ into right-
moving (cþ) and left-moving (c�) fields, �ðxÞ ¼
cþðxÞ þ c�ðxÞ, where c�ðxÞ ¼ ð	i=

ffiffiffiffiffiffi
2L

p ÞPk>0e
�ikxck.

Here cyk creates an electron with wave vector k ¼ �nk=L

(nk ¼ 1; 2; . . . ) in the wire and satisfies fck; cyk0 g ¼ �k;k0 .

The time evolution of cþ has the bosonized form [12],

cþðx; tÞ ! eiðkFþ�=2LÞxffiffiffiffiffiffiffiffiffi
2�a

p ei�0ðx;tÞei½cþ’ðx�vtÞþc�’ð�x�vtÞ�:

Here, �0ðx; tÞ ¼ �ðx� g�1vtÞN=L� � is the fermionic
zero mode, coming from the thermal fluctuation of the
number of electrons occupying the wire, cþ’ðx� vtÞ
and c�’ð�x� vtÞ are the bosonic plasmon modes,

½�;N� ¼ i, c�¼ðg�1=2�g1=2Þ=2, ’ðzÞ¼P
q>0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=qL

p �
eiqz�aq=2bqþH:c:, and a is the usual short-distance cutoff.

Note that c�ðx; tÞ has a similar expression. According to
this description, when an electron tunnels into cþðxiÞ, it
breaks into three fractions in the spinless case, one right-
moving plasmon mode cþ’ (the blue mode of Fig. 2),
another left-moving plasmon mode c�’ (red), and one
right-moving zero mode �0 (purple); there is also the
tunneling into c�ðxiÞ, which has the same fractionaliza-
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FIG. 2 (color). Revival of coherence. (a) Plot of log10jGintj, as
a function of xe, for the spinless case with xi ¼ 0:07L, kBT ¼
5�, g ¼ 1=7, and Fermi wave vector kF ¼ 40�=L. The interfer-
ence signal Gintðxi; xeÞ follows the exponential decay of
expð�jxe � xij=‘�Þ with multiple coherence lengths ‘� as xe
moves from xi, and it revives around xe ¼ L� xi. Gint is
normalized by the value at xe ¼ xi and oscillates with period
2�k�1

F . Inset: log10½jGintj expðjxe � xij=‘�;TÞ�. In this plot, the

pure thermal phase smearing is factored out. (b1)–(b5) Sche-
matic views of the dynamics of the three modes (depicted by
blue, red, and purple), generated at xi and time t ¼ 0 by the
injection of an electron to the wire considered in (a). The modes
move with different velocities (� v and v=g) and are bounced at
the wire boundaries. In (b1)–(b4), the blue mode arrives at xj at

time tj ¼ ðxj � xiÞ=v, j ¼ 1; 2; 3; 4, moving from xi to xj with-

out any bounce, while in (b5) it arrives at x4 at t5 ¼ ð2L� x4 �
xiÞ=v after one bounce at the right boundary. Here, x1 ¼ xi, x2 ¼
0:4L, x3 ¼ 0:75L, and x4 ¼ L� xi are selected. At each time,
the purple mode has experienced n times of the round trip (the
dashed purple line) with length 2L. The mode configurations at
time tj dominantly contribute to Gintðxi; xjÞ, and the configura-

tions at t4 and t5 result in the revival of the coherence.
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tion but with ‘‘left’’ and ‘‘right’’ exchanged. The two
plasmon modes move with the same speed v, while the
zero mode moves with v=g; in the noninteracting case
(g ¼ 1), no fractionalization occurs, as the blue and the
zero mode move together and the red disappears (c� ¼ 0).
Because of bounces at the wire boundaries, the modes
separate and recombine repeatedly. The overlap between
the modes at time t and the electron state localized at xe
determines Aðxi; xe; tÞ. The overlap becomes larger as the
modes locate closer to xe, and is drastically enhanced when
some of the modes recombine at xe, which is responsible
for the nontrivial behavior of the coherence.

We first examine the contribution of the two plasmon
modes to the coherence. Hereafter we choose xi 2 ½0; L=2�
without loss of generality. The contribution is negligible
except for around the times when the blue mode arrives at
xe, since the blue has a bigger effect on the overlap than the
red (cþ > c�). In view of the decay in FTðtÞwith time t, we
first consider the shortest one among those special times,
namely, tdire ¼ jxe � xij=v at which the blue mode prop-
agates from xi to xe directly without any boundary bounce
[Figs. 2(b1)–2(b4)]. The magnitude of the contribution
from tdire depends on the separation distance between the
blue and red modes at tdire. A natural candidate of the
distance is d1 ¼ 2vtdire. In addition to d1, we have another
candidate, d2 ¼ 2L� 2vtdire, which comes from the fact
that the two modes recombine at t ¼ L=v (>tdire) after
their boundary bounces [Fig. 2(b5)]. The smaller of d1 and
d2 determines the magnitude of the contribution. For xe &
L=2þ xi, d1 (<d2) increases with xe, while d2 (<d1)
decreases for xe * L=2þ xi. Thus the contribution from
tdire decreases and then increases as xe moves from xi
toward L.

The second shortest time is tboun ¼ ð2L� xi � xeÞ=v
[or tboun ¼ ðxi þ xeÞ=v if the blue moves to the left], at
which time the blue mode arrives at xe after one bounce at a
wire boundary. Because of FTðtÞ, the contribution from
tboun suffers larger thermal smearing than that from tdire.
Unlike tdire, however, the red mode also arrives at xe
(recombines with the blue) if xe ¼ L� xi, enhancing
Aðxi; xe; tÞ drastically [Fig. 2(b5)]. Thus around xe ¼ L�
xi, the contributions from tdire and tboun can compete. For
smaller g and xi (closer to wire boundaries), we find that
tboun becomes more important. In Fig. 2, tboun (tdire) is more
important for xe * L� xi (xe & L� xi). Both the events
at tdire and tboun result in the revival of the coherence around
xe ¼ L� xi due to the recombination.

Next we examine the contribution of the zero mode,
which is determined by its overlap with the blue mode at
the time it arrives at xe. Since the zero mode moves faster
than the blue by factor 1=g (>1), the overlap decays with
time right after the electron injection into the wire. When
xe is sufficiently away from xi, however, it now becomes
possible that the zero mode makes the round trip of the
wire once and recombines with the blue mode [Fig. 2(b2)],
which will suppress the decay. This recombination and the
contribution from the two plasmonmodes together result in

the coherence length near xe ¼ x2 [Fig. 2(a)], which is
different from the coherence length near xe ¼ xi. For
sufficiently small g, the zero mode experiences the round
trip multiple times, while the blue mode moves directly
from xi to L� xi. Then, the recombination between the
zero mode and the blue can occur at multiple locations.
These multiple recombinations, together with the contri-
butions from the two plasmon modes, give rise to the
multiple coherence lengths in Fig. 2.
The above interpretation is supported by the following

calculation. We split Aðxi; xe; tÞ into four pieces,
A��ðxi;xe; tÞ ¼ hc y

�ðxi;0Þc �ðxe; tÞþ c �ðxe; tÞc y
�ðxi;0Þiw,

where�; � ¼ þ;�. At kBT * � and for xe 2 ½xi; L� xi�,
we find that among the pieces, Aþþ dominantly determines
Gint. For general t, Aþþðxi;xe;tÞ is given by ð�aÞ�1Fðx0Þ�
ei½kFþ�=ð2LÞ�x�Re½ei�x0=ð2LÞBðxi;xe;tÞ�. Here, Fðx0Þ ¼
hei�x0N=Liw comes from the zero mode, Bðxi; xe; tÞ ¼
½Kðx� � vtÞ�c2þ½Kð�x� � vtÞ�c2�½Kð�xþ � vtÞKðxþ �
vtÞ�cþc�jKð2xÞKð2yÞj�cþc� is the plasmon contribution,

x� ¼ xe � xi, x0 ¼ x� � g�1vt, and KðzÞ¼ ð1�
e��a=LÞð1�eðiz�aÞ�=LÞ�1e

�4
P

q>0
hbyqbqiwð�=qLÞsin2ðqz=2Þ: The

plasmon modes contribute to Aþþ whenever one of the
arguments of K’s constituting B vanishes, since KðzÞ rap-
idly decreases with increasing jzj (mod2L) at kBT * �.
Among those times, the most important contribution comes
from tdire and tboun (cþ>c�), which are the two shortest
arrival times of the blue mode at xe.
For xe around the nth recombination point, where the

zero mode recombines with the blue after the round trip n
times, Aþþðxi; xe; tdireÞ is found to be proportional to

e�‘�1
�;T

½ðxe�xiÞðgþ1=gÞ=2�vtdire�2gL½ðxe�xi�vtdire=gÞ=2L�2�

� e�‘�1
�;T

½2gL½ðxe�xi�vtdire=gÞ=2L�2þ2gnðxe�xi�vtdire=gÞ�:

Here, we have used the approximation of hbyqbqiw / 1=q in

KðzÞ, which is valid for kBT * �. The second exponential
factor comes from the zero mode while the first exponen-
tial factor describes the overlap between the blue and red
plasmon modes. Note that in the exponents, the terms
quadratic in xe � xi cancel with each other while the linear
terms survive. From these linear terms, we find that the
coherence length ‘�ðnÞ is given by

‘�1
� ðnÞ ¼ ‘�1

�;T þ ‘�1
�;spinlessðnÞ;

‘�1
�;spinlessðnÞ ¼ ‘�1

�;T

�
g�1 þ g� 2

2
� 2nð1� gÞ

�
;

‘�;T ¼ @v

�kBT
:

(2)

The thermal coherence length ‘�;T comes from the thermal

smearing by FT , while ‘�;spinlessðnÞ comes from the inter-

action effects; in the noninteracting case of g ¼ 1, ‘�1
�;T still

appears, while ‘�1
�;spinlessðnÞ (thus coherence revival and

multiple coherence lengths) disappears. The proper values
of n and the region where ‘�ðnÞ is applied depend on g and
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xi. For xi & gL=ð2� 2gÞ [see Fig. 2], n runs over
0; 1; . . . ; nmax, where nmax is the largest integer smaller
than 0:5þ ðg�1 � 1ÞðL� 2xiÞ=ð2LÞ, and ‘�ðnÞ applies to
the range of 2n� 1 & ðg�1 � 1Þðxe � xiÞ=L & 2nþ 1.
Equation (2) is in excellent agreement with the calcula-
tion of Gint for various values of g and T (Fig. 3). The
interaction-induced dephasing in Eq. (2) is caused by the
excitations within energy window of
�kBT, as the tail of
the modes, which determines the overlap between the
modes, decays exponentially with the rate of l�1

�;spinless /
�kBT. We remark that the coherence in the finite wire
follows the infinite case only around the injection position,
as the coherence length of the infinite wire [6] is equal to
‘�ðn ¼ 0Þ in Eq. (2), and that ‘�ðnÞ / T�1 as in other one

dimensional systems [1–3,6].
From the fact that ‘�ðnÞ is negative in the region where

the revival occurs, we find that the condition for the oc-
currence of the revival is ‘�1

�;spinlessðnmaxÞ< 0. For xi &

L=4, for instance, this condition results in g & 1=3.
When the pure thermal effect of ‘�;T is factored out as in

Ginte
jxe�xij=‘�;T , the coherence revival becomes more pro-

nounced (see the insets of Figs. 2 and 3).
Spinful case.—In the spinful case, the spin mode moves

slower than the charge modes by the factor g, showing the
spin-charge separation [11], and the interaction is effec-
tively weaker than the spinless case, as its number of states
is 2 times larger. As a result, for kBT * �, � here being the
level spacing of the charge plasmons, we find that Eq. (2) is
modified into

‘�1
� ðnÞ ¼ ‘�1

�;T þ ‘�1
�;chðnÞ þ ‘�1

�;sp;

‘�1
�;chðnÞ ¼ ‘�1

�;T

�
g�1 þ g� 2

4
� 2nð1� gÞ

�
;

‘�1
�;sp ¼ ‘�1

�;T

g�1 � 1

2
:

(3)

Here, ‘�;ch comes from the dynamics of the charge modes

and corresponds to ‘�;spinless, while ‘�;sp shows the dephas-

ing by the spin-charge separation. For xi=L & g=ð1� gÞ,
‘�ðnÞ in Eq. (3) is applied to 2n� 1 & ðg�1 � 1Þðxe �
xiÞ=ð2LÞ & 2nþ 1, where n runs over 0; 1; . . . ; nmax and
nmax ’ ðg�1 � 1ÞðL� 2xiÞ=ð4LÞ. The revival of the coher-
ence appears at xe ¼ L� xi for g & 1=5, when xi & L=4.
Note that the revival of the coherence with multiple coher-
ence lengths due to the charge modes can be singled out by

measuring Ginte
jxe�xijð‘�1

�;T
þ‘�1

�;sp
Þ.

Conclusion.—We have shown that the interplay of the
interaction and the finite-size effect, such as the dynamics
of the electron fractionalization (into the plasmon modes
and the zero mode) under the boundary bouncing, can
cause nontrivial behavior of electron coherence in a
finite-size system, which is drastically different from the
infinite case. Our finding may motivate further research
activities towards the understanding of coherence of inter-
acting particles in various systems [14–17].
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FIG. 3 (color online). Dependence on temperature and inter-
action strength. The same as in Fig. 2(a) except for different
values of kBT and g. (a) g ¼ 1=5, 1=6, and 1=7 from top to
bottom, while kBT ¼ 5� is common. (b) kBT ¼ 0:5�, �, and 2�
from top to bottom, while g ¼ 1=5. The black lines represent the
slopes obtained from ‘�ðnÞ in Eq. (2).
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