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Unveiling the Formation Mechanism of Pseudo-Single-Crystal Aragonite Platelets in Nacre
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We demonstrate direct evidence that a single-crystal-like aragonite platelet is essentially assembled
with aragonite nanoparticles. The aragonite nanoparticles are readily oriented and assembled into pseudo-
single-crystal aragonite platelets via screw dislocation and amorphous aggregation, which are two
dominant mediating mechanisms between nanoparticles during biomineralization. These findings will
advance our understanding of nacre’s biomineralization process and provide additional design guidelines

for developing biomimetic materials.
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Seashells have long been identified as natural armor
materials with superior mechanical strength and toughness.
The structure of seashells has evolved through millions of
years to a level of optimization not currently achieved in
engineered materials [1]. One of the best examples is nacre
(mother of pearl) that is found in the shiny interior of many
mollusk shells. Nacre is composed of approximately
95 vol.% brittle inorganic aragonite (a mineral form of
CaCO;) and a small percentage of organic biopolymer [2].
This material has a brick-and-mortar-like structure with
highly organized polygonal aragonite platelets of a thick-
ness ranging from 200 to 500 nm and an edge length of
about 5 um sandwiched with a 5-20 nm thick organic
biopolymer interlayer, which assembles the aragonite pla-
telets together [3]. Previous transmission electron micros-
copy (TEM) studies showed that the electron diffraction
patterns of individual aragonite platelets have character-
istics of single-crystal electron diffraction [4-6]. It has
long been thought that aragonite platelets are brittle single
crystals. However, recent atomic force microscopy (AFM)
observation [3,7,8] revealed that individual aragonite pla-
telets in fact consist of a large number of nanometer-sized
particles with an average size of 32-44 nm and the arago-
nite platelets are not brittle but ductile. This distinctly
contradicts the fact that individual aragonite platelets scat-
ter as single crystals in TEM diffraction. A key question is
raised, but not answered: how do nacre’s aragonite plate-
lets exhibit a dual nature with the characteristics of both
monocrystal and polycrystals (nanoparticles) in such a
contradictory manner? Here we report new mechanisms
that nature uses to fabricate nacre’s aragonite platelets at
the nanoscale.

In this Letter, natural nacre materials from California red
abalone (Haliotis rufescens) that belong to the class of
gastropoda were studied. The shells were collected alive
in Santa Barbara, CA. To minimize the detrimental effect
of drying on the structure of shells, they were cleaned and
air delivered in ice to the laboratory where the experiments
were conducted. Nacre samples were cut from the nacre
layer of the shells with a water-cooled, low-speed diamond
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saw. Then the nacre samples were rinsed thoroughly with
distilled water. The TEM samples were prepared by sec-
tioning the nacre using the microtome technique (Microm
HM 325 Rotary Paraffin Microtome) and then transferred
onto the holey carbon-coated copper film for observation in
a JEOL JEM 2100F transmission electron microscope with
an accelerating voltage of 200 kV.

Nacre’s cross section resembles a brick wall with ara-
gonite platelets with [001] orientation toward organic bio-
polymer interlayers, as shown in Fig. 1(a). The electron
diffraction patterns of individual aragonite platelets exhibit
characteristics of a single crystal [Fig. 1(b)]. The high
resolution TEM (HRTEM) image [Fig. 2(a)] reveals that
individual aragonite platelets consist of a large number of
nanoparticles. This is in good agreement with the recent
AFM observation [3,7,8]. Fast Fourier transformation
(FFT) analysis reveals that these nanoparticles are arago-
nite [see inset in Fig. 2(a)]. Some nanoparticles in the
platelet hold the same crystal orientation. Here, let us
take two particles in the boxed area in Fig. 2(a) as an
example. Lattice fringe details [Fig. 2(b)] suggest that the
interface between the two adjacent nanoparticles involves
a slip of one particle relative to the other along [010]
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FIG. 1. Structural characterization of nacre. (a) TEM image of
nacre’s cross section, showing a brick wall-like architecture with
aragonite platelets sandwiched with organic biopolymer inter-
layers. (b) Electron diffraction pattern of aragonite platelets,
exhibiting single-crystal diffraction characteristics.
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direction. Atomic arrangement at the interface is crystallo-
graphically different from that of the two adjacent parti-
cles, but the interface atoms are still packed in an ordered
and repeated manner. The crystallographic planes linking
the two adjacent nanoparticles were determined to be
aragonite (042) planes [Figs. 2(b)-2(d)], which are sche-
matically illustrated in Fig. 2(e). Such a type of crystallo-
graphic defect can be visualized as a screw dislocation,
numerically corresponding to slipping across the two ad-
jacent nanoparticles by one and a half of lattice vector %
[010]. Figure 2(f) is a three-dimensional schematic illus-
tration showing how the two adjacent aragonite nanopar-
ticles are assembled via such screw dislocation in a parallel
manner.

Why does nature assemble aragonite nanoparticles
through such a screw dislocation mechanism? Indeed,
several independent studies reported screw dislocation-
based spiral growth of aragonite platelets [9-13].
However, the assembly mechanism of the aragonite nano-

FIG. 2 (color). Observation and analy-
sis of screw dislocation. (a) TEM image
of two aragonite platelets with an or-
ganic biopolymer interlayer and a min-
eral bridge. (b) HRTEM image of the
boxed area in Fig. 2(a), showing a screw
dislocation lining two adjacent particles.
(c) FFT pattern of the image in Fig. 2(b).
(d) Close-up view of the atomic arrange-
ment of the interface between the two
adjacent nanoparticles. (e) Schematic
showing that crystallographic planes
linking the two adjacent nanoparticles
are determined to be aragonite (042)
planes. (f) Screw dislocation is visual-
ized by considering slipping across the
two adjacent nanoparticles by one and a
half of lattice vector %[010].
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particles inside individual platelets is completely un-
known. The aragonite nanoparticles are defect-free
crystals with unsatisfied surface bonds exposed to the
mineral-solution or the mineral-organic interface during
the biomineralization process. Thermodynamically, the
assembly of aragonite nanoparticles is preferentially driven
via reducing overall surface energy associated with the
surface unsatisfied bonds. This requires that aragonite
nanoparticles be oriented and attached to other nanopar-
ticles or nanoparticle clusters. Such imperfect coherence
between nanoparticles is realized in nacre by low energy
driven screw dislocation. A similar assembly strategy was
also demonstrated in a nanocrystalline titania particle sys-
tem [14].

It was also found that in a single aragonite platelet, some
nanoparticles do not hold the same crystal orientation, but
why does the platelet exhibit single-crystal diffraction
characteristics? Figure 3 shows the HRTEM images and
corresponding FFT patterns of the nanoparticles in an
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aragonite platelet. The FFT pattern [inset in Fig. 3(a)] from
the whole image of Fig. 3(a) clearly exhibits single-crystal
diffraction characteristics. Figure 3(a) contains at least
three nanoparticles, as indicated by boxed areas b, ¢, and
d in the figure. The FFT patterns of these three boxed areas
reveal that particles b, ¢, and d have different crystal
orientations. The diffraction patterns of particles b, c, and
d can be indexed [100], [110], and [221] zones, respec-
tively. When the three diffraction patterns are superposed
[Figs. 3: (b") + (¢"") + (d")], surprisingly, they form a
single-crystal-like diffraction pattern [Fig. 3(a")], i.e.,
pseudo-single-crystal effect. The unique crystal structure
of aragonite and the arrangement of the aragonite nano-
particles in nacre’s platelets make the diffraction patterns
of individual platelets show single-crystal characteristics,
which have confused us for decades.

Geometrically speaking, it is impossible that all
aragonite nanoparticles are assembled by screw disloca-
tion to achieve a high packing density. What is the other
mechanism that works together with screw disloca-
tion to assemble aragonite nanoparticles into individual
platelets? We found amorphous phase between some
aragonite nanoparticles, as shown in boxed area e in
Fig. 3(a). This suggests that amorphous aggregation is
another mediating mechanism between nacre’s aragonite
nanoparticles during the biomineralization process. The
amorphous layer between nanoparticles would assist the
particles’ rotation and hold the surrounding nanoparticle
clusters to share a specific crystallographic orientation.
Figure 4 shows such an aragonite nanoparticle being as-
sembled (docked) to the assembled aragonite platelet. It is
believed that screw dislocation and organic biopolymer
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FIG. 4 (color).
nanoparticles attached to the assembled aragonite platelet.

aggregation work together in assembling aragonite nano-
particle into individual platelets.

In summary, we have demonstrated direct evidence
that a single-crystal-like aragonite platelet is essentially
assembled with aragonite nanoparticles. Screw disloca-
tion and amorphous aggregation are two dominant medi-
ating mechanisms between nanoparticles during nacre’s
biomineralization process. The unique crystal struc-
ture of aragonite and the arrangement of the aragonite
nanoparticles in nacre’s platelets make the diffraction
patterns of individual platelets exhibit single-crystal
characteristics.
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Nanoparticle assembly characteristics. (a) HRTEM image of an aragonite platelet. (b) Close-up view of two
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