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We propose to use the mechanism of an echo effect previously observed in hadron accelerators for up-

frequency conversion of density modulation in an electron beam. We show that, for generation of high

harmonics, this method is much more efficient in comparison with the currently used approach. A one-

dimensional model of the effect is developed which allows us to optimize the amplitude of the modulation

for a given harmonic number.
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The development of high-power short-wavelength free
electron lasers (FELs) over the last years holds a promise
of providing researches with a light source capable to
generate coherent ultra short pulses of radiation in the
spectral range from infrared to hard x rays. The two main
approaches that are currently pursued in the design of the
next generation light sources are the self-amplified sponta-
neous emission (SASE) FELs [1,2], and the high-gain
harmonic generation (HGHG) scheme [3,4]. One of the
main advantages of the HGHG over the SASE FEL is that,
by using up-frequency conversion of the initial seed signal,
HGHG allows us to produce not only transversely, but also
temporally coherent pulses. In contrast, the SASE radiation
starts from initial shot noise in the beam, with the resulting
radiation having an excellent spatial coherence, but a rather
poor temporal one.

Unfortunately, the standard HGHG suffers an essential
drawback in that a single stage frequency conversion al-
lows only a limited frequency multiplication factor [4].
This leads to multistage approach for x-ray production
seeded at an ultraviolet wavelength [5], with a significant
complication in the overall design. Some improvements in
the cascading efficiency can be achieved by modification
of the original idea, as demonstrated in a recent Letter [6].
However, generation of harmonic numbers in the range of
10 to 20 still requires a large energy modulation of the
beam and deteriorates the beam properties as a lasing me-
dium. In addition, the laser power for the seed light scales
as a square of the modulation amplitude [7] and becomes
expensive with an increased modulation amplitude.

The goal of this Letter is to point out a new physical
mechanism that has several important advantages over the
classical approach to the frequency cascading. This mecha-
nism is intimately linked to the echo effect in circular
accelerators [8], hence the name. In the echo experiments
[9], it was demonstrated that modulating the beam energy
with the frequency !1 and, after some delay, with the
frequency !2 leads, after a ‘‘sleep’’ time, to an echo signal
at the frequency m!1 � k!2, where m and k are integer
numbers [10]. The experiments [9] were carried out using
the modulation frequencies in the range from megahertz to
hundreds of megahertz. As we will show below, the echo

effect can also be implemented at much higher laser fre-
quencies. Before describing a setup for such an experi-
ment, we will quickly review a traditional way to modulate
the beam current using a laser and an undulator tuned to the
laser frequency.
The setup for such a device is shown in Fig. 1(a). An

electron bunch with an average energy E0 interacts with a
laser beam of frequency ! in a short undulator (called a
modulator) with the resonant frequency tuned to !.
Typically, the bunch length is much larger than the laser
wavelength, and one can locally consider a longitudinally
uniform beam, neglecting variation of the beam current
over the distance of several laser wavelength. We assume
an initial Gaussian beam energy distribution with the vari-
ance �E and use the variable p ¼ ðE� E0Þ=�E for the di-
mensionless energy deviation of a particle. The initial dis-

tribution function of the beam is fðpÞ¼N0ð2�Þ�1=2e�p2=2,
where N0 is the number of particles per unit length of the
beam.
After passage through the undulator, the beam energy is

modulated with the amplitude �E so that the final dimen-
sionless energy deviation p0 is related to the initial one p
by the equation p0 ¼ pþ A sinðqzÞ, where A ¼ �E=�E,
q ¼ !=c, and z is the longitudinal coordinate in the beam.
The distribution function after the interaction with the laser

becomes fð�; pÞ ¼ N0ð2�Þ�1=2 exp½�ðp� A sin�Þ2=2�
where we now use the dimensionless variable � ¼ qz.
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FIG. 1 (color online). A traditional system (a) consists of an
undulator and a dispersive section. The proposed new scheme
(b) includes two consecutive modulators.

PRL 102, 074801 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 FEBRUARY 2009

0031-9007=09=102(7)=074801(4) 074801-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.074801


Sending then the beam through a dispersive system with
the dispersive strength R56 converts the longitudinal z into
z0, z0 ¼ zþ R56p�E=E0, and makes the distribution func-
tion

fð�; pÞ ¼ N0
ffiffiffiffiffiffiffi

2�
p exp

�

� 1

2
½p� A sinð� � BpÞ�2

�

; (1)

where B ¼ R56q�E=E0 (for notational clarity, we dropped
primes in the arguments of f). Integration of f over p gives
the distribution of the beam density N as a function of the
coordinate � ,

Nð�Þ ¼
Z 1

�1
dpfð�; pÞ: (2)

Noting that this density is a periodic function of � , one can
expand it into Fourier series

Nð�Þ
N0

¼ 1þ X
1

k¼1

bk cosðk� þ c kÞ; (3)

where the coefficient bk is the amplitude of the harmonic k.
Calculations with the function (1) give an analytical ex-
pression for bk (see, e.g., [4] and references therein)

jbkj ¼ 2e�ð1=2ÞB2k2 jJkðABkÞj; (4)

where Jk is the Bessel function of order k.
It follows from this formula that if A & 1, then bk decays

exponentially when k increases. For a numerical illus-
tration, let us take A ¼ 1; then the modulation in the forth
harmonic is approximately equal to 1%, jb4j ¼ 0:01, and
jb5j ¼ 1:9� 10�3. To obtain 10% modulation in 10th
harmonic (jb10j ¼ 0:1), A is required to be not less then
5.9, which would result in a sixfold increase in the en-
ergy spread of the beam after the passage through the
modulator.

To overcome the low efficacy of the standard approach
to modulate the beam, we propose to use a modulation
analogous to the experiments [9], albeit extended into the
region of optical frequencies. The setup is depicted in
Fig. 1(b). After passing through the system described
above, the beam is sent through one more energy modula-
tor and an additional dispersive section. To distinguish
between the first and the second modulators and dispersive
sections, we will now use indices 1 and 2, respectively (so
that the distribution function (1) is now written with A and
B replaced by A1 and B1). In general, the frequency !2 of
the second laser beam can differ from the frequency of the
first laser !1.

The final distribution function at the exit from the sec-
ond dispersion section can be easily found by apply-
ing consecutively two more transformations to (1), similar
to the derivation outlined above. The first of these two
transformations corresponding to the modulation of the
beam energy with dimensionless amplitude A2 is p

0 ¼ pþ
A2 sinðq2zþ�Þ, where � is a phase of the second laser
beam, and the second one corresponding to the passage

through the second dispersive element is z0 ¼ zþ
pRð2Þ

56�E=E0. The resulting final distribution function is

(we again drop primes in the arguments of f):

fð�; pÞ ¼ N
ffiffiffiffiffiffiffi

2�
p exp

�

� 1

2
fp� A2 sinðK� � KB2pþ�Þ

� A1 sin½� � ðB1 þ B2Þp
þ A2B1 sinðK� � KB2pþ�Þ�g2

�

; (5)

where we now use the notation � ¼ q1z, B1 ¼
Rð1Þ
56q1�E=E0, B2 ¼ Rð2Þ

56 q1�E=E0, and K ¼ q2=q1.
To simplify analysis, we first consider the limit of small

energy modulations, A1, A2 � 1. At the same time, we
assume that the product A2B1 may not be small. We then
expand the distribution function (5) keeping only linear
terms in A1 and A2. It is easy to see that the result of such
an expansion gives three terms: the zero order term

N0ð2�Þ�1=2e�ðp2=2Þ, the term N0ð2�Þ�1=2e�ðp2=2ÞpA2 �
sinðK� � KB2pþ�Þ linear in A2, and finally, the term,
which we denote f3,

f3ð�; pÞ ¼ N0
ffiffiffiffiffiffiffi

2�
p e�ðp2=2ÞpA1 sin½� � ðB1 þ B2Þp

þ A2B1 sinðK� � KB2pþ�Þ�: (6)

This last term is responsible for the echo effect, so we will
focus on this term only. Using the mathematical identity
sin½�1 þ x sinð�2Þ� ¼

P1
k¼�1 JkðxÞ sinð�1 þ k�2Þ and

integrating Eq. (6) over p gives

Z 1

�1
f3ð�; pÞdp ¼ X

1

k¼�1
ck cosð� þ kK� þ k�Þ; (7)

with

ck ¼ �A1½B1 þ B2ðkK þ 1Þ�JkðB1A2Þe�ð1=2Þ½B1þB2ðkKþ1Þ�2 :

(8)

Each term in sum (7) corresponds to modulation with the
wave number qecho equal to

qecho ¼ kq2 þ q1; (9)

and we see that large values of k give up-frequency con-
version of the wave number of the second laser q2. Note
that k takes both positive and negative values; a negative
qecho means a modulation with a wavelength 2�=jqechoj.
For a given B1, one can maximize the absolute value of

jckj by choosing

B2 ¼ � B1 � 1

kK þ 1
; (10)

which gives

jckj ¼ A1
ffiffiffi

e
p jJkðA2B1Þj; (11)

where e ¼ 2:71. Note that since k takes both positive and
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negative values, Eq. (10) allows for solutions with Rð1Þ
56 and

Rð2Þ
56 having either the same or opposite signs. For a given

amplitude of the modulation A1, one can now further max-
imize the value of the Bessel function in this expression by
optimizing the value of B1, that is by properly choosing

Rð1Þ
56 . For k > 4, with an accuracy better than a few percent,

the maximum of the Bessel function Jk is approximately

equal to 0:67=k1=3, and it is attained for the value of its

argument equal to kþ 0:81k1=3. This gives the maximum
value of jckj

jckj � 0:41A1

jkj1=3 ; (12)

for

jB1j � jkj
A2

ð1þ 0:81jkj�2=3Þ: (13)

Since we assume that A2 � 1, it follows from the above
equation that jB1j should be much larger than unity for the
validity of our approximation. Note that although our
definitions of A1;2 and B1;2 involve the energy spread in

the beam �E, the optimal settings for the dimensional

factors Rð1Þ
56 and Rð2Þ

56 , as follows from Eqs. (13) and (11),

do not depend on �E. They do depend however on the
amplitude of the energy modulation A2�E in the second
modulator.

Equation (12) demonstrates a remarkable feature of the

echo modulation—a very slow decay / jkj�1=3 with the
harmonic number k. This kind of dependence is in sharp
contrast with the exponential decrease of the bunching
factor with k demonstrated by Eq. (4) for A1 & 1.

One can show that in the general case of arbitrary values
of parameters A1 and A2, the wave number for the echo
signal is qecho ¼ kq2 þmq1, where k and m are arbitrary
(positive or negative) integer numbers.

From a practical point of view, a particularly interesting
case is represented by selection of equal frequencies for
both modulators, q1 ¼ q2. This case can be realized with a
single laser system by splitting the laser light and sending it
to both undulators. Remarkably, this case allows an ana-
lytical solution for arbitrary values of parameters A1 and
A2. The echo wave number in this case is equal to an
integer numbers of q1, and hence the dimensionless
beam density can again be expanded in Fourier series (3).
Omitting a lengthy derivation, we present here the final
result for the amplitudes of the modulation in this case:

bk ¼ 2

�
�
�
�
�
�
�
�

X
1

m¼�1
eim�J�m�kfA1½ðmþ kÞB1 þ kB2�g

� JmðkA2B2Þe�ð1=2Þ½ðmþkÞB1þkB2�2
�
�
�
�
�
�
�
�

: (14)

Equation (14) is too complicated for analytical maxi-
mization of bk. However, if A1 and A2 are not very large,
one can use the results of the small amplitude analysis

Eq. (10) and (13) as a first approximation, with the follow-
ing numerical optimization of Eq. (14).
We will demonstrate this approach for the case A1 ¼

A2 ¼ 1, that is when the energy modulation in both mod-
ulators is equal to the original energy spread in the beam.
We will first try to maximize the amplitude of the 10th
harmonic using Eqs. (10) and (13) for B1 and B2.
Assuming that they are of the same sign [which means a
negative k ¼ �11 in Eq. (9)], we find B1 ¼ 12:8 and B2 ¼
1:18. Equation (12) predicts the amplitude b10 ¼ 0:18.
This prediction is then corrected by scanning the values
of B1 and B2 in the vicinity of the above values. The plot of
b10 as a function of B1 obtained this way with the help of
Eq. (14) is shown in Fig. 2 for several different values of
B2. As it follows from this plot, the maximal value of b10 is
actually attained when B1 ¼ 12:1 and B2 ¼ 1:3, and is
equal to 0.16, in reasonably good agreement with the small
A approximation. Note also a weaker echo effect in the
region from 5 to 7 of values of B1. It is important to
emphasize here that, as an additional numerical analysis
shows, the maximum value of b10 is insensitive to the value
of the phase �.
Figure 3 shows the evolution of the phase space of the

beam as it travels through the system, for parameters
discussed above. These pictures demonstrate a simple
physical mechanism behind the echo effect. A large value

of Rð1Þ
56 in the first modulator leads to ‘‘shredding’’ of the

beam phase space in the longitudinal direction and genera-
tion of multiple ‘‘beamlets’’ in the phase space. Each
beamlet is imaged as a stripe in the top right picture of
Fig. 3. It has an almost uniform density distribution in the z
direction and an energy spread much smaller than that of
the original beam. The role of the second modulator con-
sists in a simultaneous compression of all beamlets with a

relatively modest value of Rð2Þ
56 .

As an example of practical parameters for a pos-
sible application of the proposed scheme, we estimated
the required strengths of the dispersion elements using
the beam and the seed laser parameters of the

FIG. 2 (color online). The bunching factor for k ¼ 10 as a
function of parameter B1 for four different values of B2: 1�
B2 ¼ 1:18, 2� B2 ¼ 1:25, 3� B2 ¼ 1:3, 4� B2 ¼ 1:35.
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ELETTRA@FERMI project in Trieste [11]. The relevant
parameters are: the beam energy E0 ¼ 1:2 GeV, the beam
energy spread �E ¼ 150 keV, and the laser wavelength
0.24 �m. For the example of an optimized 10th harmonic
setup discussed above with A1 ¼ A2 ¼ 1, one finds that the
maximum amplitude of the modulation 0.16 requires

Rð1Þ
56 ¼ 4 mm and Rð2Þ

56 ¼ 0:37 mm.

In another example, increasing 3 times the modulation in
the first undulator, A1 ¼ 3 (and leaving A2 ¼ 1), allows
one to reach the relative amplitude of the 24th harmonic
(corresponding to the wavelength of 10 nm) of 0.2. The

required dispersive elements for this case are: Rð1Þ
56 ¼

8:2 mm and Rð2Þ
56 ¼ 0:35 mm.

To illustrate a possible performance of the echo modu-
lated beam in the previous example (with A1 ¼ 3 and A2 ¼
1), we simulated FEL radiation of such a beam at the
wavelength of 10 nm using the upgraded code Genesis
[12]. In this simulation, the first modulator was chosen to
be 135 cm long with the undulator period length of 15 cm.
The input laser beam had a waist of 310 microns and the
peak power of 64 MW. The second modulator was 45 cm
long and had just 3 undulator periods, with the laser
parameters being the same as in the first modulator.

The evolution of the radiation power in the undulator is
shown in Fig. 4. The peak power of the 24th harmonic
radiation exceeds 1.6 GWand it saturates after 5 undulator
sections (the total magnet length is 12.5 m).

There are several practical physical effects that are left
behind our simplified one-dimensional analysis of the echo

effect. They include coupling between transverse and lon-
gitudinal degrees of freedom, coherent and incoherent
radiation of the bunched beam in dispersion elements,
and additional energy spread introduced by the radiation,
radial inhomogeneity of the laser beam in the undulator,
and its effect on the amplitude of the echo effect. These and
other effects should be taken in the account in the design
and optimization of the echo experiment setup. It is likely
that they will determine the ultimate shortest wavelength
of modulation achievable with the proposed approach.
The author would like to thank M. Zolotorev for a useful
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FIG. 4. FEL power versus the undulator length Lu.

FIG. 3 (color online). The phase space of the beam after the
first undulator (top left), the first dispersive element (top right),
the second undulator (bottom left), and the second dispersive
element (bottom right). Horizontal axes in the plots are � , and
the vertical axes are p.
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