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Hyperbolicity and the Effective Dimension of Spatially Extended Dissipative Systems
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Using covariant Lyapunov vectors, we reveal a split of the tangent space of standard models of one-
dimensional dissipative spatiotemporal chaos: A finite extensive set of N dynamically entangled vectors
with frequent common tangencies describes all of the physically relevant dynamics and is hyperbolically
separated from possibly infinitely many isolated modes representing trivial, exponentially decaying
perturbations. We argue that N can be interpreted as the number of effective degrees of freedom, which
has to be taken into account in numerical integration and control issues.
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Nonlinear dissipative partial differential equations
(PDEs) are ubiquitous in the description of pattern-
forming, chaotic, and turbulent systems [1]. Even though
they are formally infinite-dimensional dynamical systems,
it is now well accepted that their chaotic solutions evolve in
an effective manifold of finite dimension. For many ge-
neric PDEs such as the Kuramoto-Sivashinsky (KS) and
the complex Ginzburg-Landau (CGL), it is in fact proven
that trajectories are first exponentially attracted to a finite-
dimensional invariant manifold called the inertial manifold
[2]. This object, however, remains largely formal, as there
does not exist a constructive way of determining of which
modes it is composed. Similarly, trajectories eventually fall
into a global attractor of finite Hausdorff dimension. For
large systems, this dimension, as well as other quantities
measuring the amount of chaos in the system, can be
estimated via the calculation of Lyapunov exponents.
These dimensions remain, however, global quantifiers.
One approach to determine which modes actually compose
and contribute to the dynamics is that pursued, e.g., by Lan
and Cvitanovi¢ [3], but it is difficult and limited to rather
small systems.

A related difficulty lies in the numerical integration of
dissipative PDEs (which remains the primary way of
studying their often chaotic solutions). If the finite dimen-
sionality of their attractors justifies that a numerical study
is possible at all, there is no a priori criterion to define the
minimal resolution for a faithful simulation, and in prac-
tice, one typically checks the convergence of results upon
increasing the resolution.

In this Letter, we use covariant Lyapunov vectors
(CLVs), recently made numerically accessible thanks to
an efficient algorithm [4], to show that the tangent dynam-
ics of large KS and CGL systems is essentially character-
ized by a well-defined set of ““physical”” modes. Because
the covariant vectors span the intrinsic (Oseledec) subspa-
ces corresponding to each Lyapunov exponent and thus
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allow access to hyperbolicity properties, we are able to
show that the physical modes are decoupled from the
remaining set of hyperbolically “isolated’ degrees of free-
dom. In the context of dissipative partial differential equa-
tions, our results imply that a faithful numerical integration
needs to incorporate at least as many degrees of freedom as
the number of such physical modes and that further in-
creasing the resolution increases the number of degrees of
freedom associated with the trivially decaying isolated
modes.

We first focus on the one-dimensional KS equation,
taken here as a prototypical dissipative PDE showing
space-time chaos [1,5]. It governs a real field u(x, t) ac-
cording to

du=—02u— 0*u — ud,u, xe[0, L]l (1

Figure 1 shows the Lyapunov spectrum for a fixed system
size L = 96 but different spatial resolutions and periodic
or rigid boundary conditions (PBC or RBC) [6]. The
spectrum consists of two parts: first a smooth region of
positive, zero, and some negative exponents and then a
rather steep region of negative exponents arranged in steps
of two for PBC. The two regions are separated by an abrupt
change in slope (bottom inset). Remarkably, the spectra for
different spatial resolutions overlap with the extra expo-
nents coming from the higher resolution simply accumu-
lating in the second region, at the negative end of the
spectrum (upward and downward triangles). Thus the
threshold index separating the two regions stays unchanged
(here around j = 40) upon increasing resolution. Note also
that the boundary conditions change only the multiplicity
of modes in the second region, where every other mode is
exactly the same for both PBC and RBC.

The above observations suggest that modes in the sec-
ond region, hereafter called isolated, for reasons given
below, are residual, highly damped degrees of freedom
not necessary to describe properly the essential dynamics.
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FIG. 1 (color online). Lyapunov spectrum AY) made of ex-
ponents arranged by decreasing value for the one-dimensional
KS equation with L = 96. Black upward triangles: k., =
4227 /L and PBC. Red downward triangles: k., = 85 X 27/L
and PBC. Blue dots: k., = 170 X 77/L and RBC [u(L,t) =
u(0,7) = 0]. In all three cases, the spectrum yields a positive
region with maximum Lyapunov exponent A" = 0.09. Top
inset: AU vs j* for the large-j (isolated) modes. Bottom
inset: Close-up around the threshold.

In contrast, the modes in the first region, which should be
intimately associated with phase space dynamics, will be
called physical. In the following, we substantiate this in-
tuition on a rigorous basis studying the CLVs associated
with Lyapunov exponents. The CLVs for the isolated
modes, contrary to those of the physical modes, possess
an approximately sinusoidal, delocalized structure as can
be seen from their power spectra [Fig. 2(b)], as well as
directly from their rather uneventful spatiotemporal evolu-
tion [Fig. 2(a)]. With PBC, the two modes forming a step
show the same dominant wave number with an arbitrary
phase shift. This is not the case of RBC where the phase of
the sinusoidal structure is fixed at the boundary. The peak

0)
wave number Kc,,

panel of Fig. 2(c)], is in fact just the jth wave number
allowed in the given spatial geometry (multiplicity taken
:)]c)ak
AD ~ = (k) )* ~ —j* (top inset of Fig. 1), which indi-
cates that the values of the Lyapunov exponents of the
isolated modes are governed by the stabilizing linear
term of the KS equation (i.e., the fourth-order derivative).

The sinusoidal structure of the isolated modes indicates
that they are nearly orthogonal to each other. Indeed,
distributions of the angle 6 between pairs of CLVs of
indices j = 42 are peaked at 77/2 and drop rapidly near 0
and 7r. This is also true if only one of the vectors is taken in
the region j = 41, but for any pair of vectors taken from
this region, the angle distribution spans the whole [0, 7]
interval [Fig. 2(d)]. A careful analysis of the angle distri-
butions reveals that those involving isolated modes seem to
have an essential singularity near 0 (and 7): p(@) ~
exp(—const/#) [Fig. 2(e)]. Given the sharpness of this

which linearly increases with j [top

into account): k’. = [j/2]27/L. For large enough j,

e (41,42)
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FIG. 2 (color online). Properties of CLVs for the KS system
(L = 96, ko = 42 X 27r/L, and PBC). (a) Spatiotemporal plot
of a typical vector in the isolated region (j = 46, total time 100).
(b) Spatial power spectra of vectors of indices j = 1, 16, 32, 38,
44, 52, 60, 68, 76, and 84 (from left to right in peak position).
(c) Top panel: Peak wave number in the power spectra (red
circles) and k = [j/2]27/L (black line). Bottom panel: DOS
violation fraction V(Tj’j D for pairs of neighboring vectors (pairs
within the same step are omitted). (d) Angle distributions be-
tween pairs of vectors. (e) The same as (d) but with a different

abscissa.

behavior, we cannot conclude about the possibility for
these distributions to be strictly bounded away from zero.
The above results determine accurately the threshold at
Jj = 41, and therefore the number of physical modes, and
give the precise definition of physical and isolated modes:
Contrary to the physical modes, the isolated modes do not
have any tangencies with other isolated modes (except the
partner in the same step) nor with physical modes. They
can be said to be “‘hyperbolically isolated.”

The absence of tangency for isolated modes can be
confirmed from another viewpoint, that of the so-called
domination of the Oseledec splitting (DOS) [7], which
quantifies, loosely speaking, the degree of dynamical iso-
lation of the Oseledec subspaces from each other due to the
strict ordering of Lyapunov exponents. Let )\(T])(t) be the
finite-time Lyapunov exponent averaged over a period 7
around time ¢. The splitting of the space formed by the
vectors associated with the modes j; and j,(>j,) is said to
be dominated if AY"(r) > AY(¢) holds for all ¢ with 7
larger than some finite 7. It is mathematically proven that
DOS implies the absence of tangency between the
Oseledec subspaces or the CLVs [7]. To quantify DOS,
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AA(J"jZ)(t) = /\g.jmin)(t) _
A (1), with e = max(jy, jo) and jui, = min(jy, j),

and measure the time fraction of DOS violation V(Tj"h) =

(O[AAY")(1)]), where O(z) is the step function and (. ..)
denotes the time average. The result is shown in the bottom

panel of Fig. 2(c) for pairs of neighboring exponents:
GoJ+1)
vr

we define, following [8],

, with 7 = 0.2, drops sharply near the threshold
and becomes strictly zero for j = 41. In fact, I/S-j’j/) stays
zero for any pairs with j or j/ > 41, though in some cases
slightly larger values of 7 are required. This confirms the
absence of tangencies of the isolated modes, already seen
from the angle distributions, and the number of physical
modes.

We now turn our attention to a different case in order to
test the validity of our results beyond the simple KS
equation. Let us consider the CGL equation, whose uni-
versal relevance and genericity is now well-established
[1,9]. In one space dimension, it governs a complex field
W(x, t) according to

AW =W —(+iBIWPW + (1 +ia))®’W. (2)

In the following we consider a so-called “‘amplitude tur-
bulence” regime [10], i.e., a strongly chaotic regime where
amplitude and phase modes evolve on rather short time and
length scales. (Results for other regimes, such as phase
turbulence, will be presented elsewhere [11].) Specifically,
we use o = —2.0, B8 = 3.0, L = 64, and PBC.

For sufficiently high spatial resolution, the Lyapunov
spectrum indeed shows an isolated, stepwise region as
for the KS equation [Fig. 3(c)], but here the multiplicity
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FIG. 3 (color online). CGL equation in the amplitude turbu-
lence regime (L = 64, ko, =31 X27/L, and PBC). (a),
(b) Spatiotemporal plots of the phase component of a typical
vector j = 91 in the isolated region (same trajectory, but at two
distant periods of time, during a total time of 20 for each plot).
(c) Lyapunov spectrum; inset: close-up around threshold.
(d) Time fraction V(Tj’j D of DOS violation, as a function of 7
(j =178, 82, 86, 90, and 94, from top to bottom).

of each step is four and the spatiotemporal evolution of iso-
lated modes reveals patches of traveling waves [Figs. 3(a)
and 3(b)]. (The effects of spatial resolution and/or bound-
ary conditions are also similar to our observations on the
KS equation.) As for the KS equation, this is in agreement
with the linear stability analysis: Normal modes are trav-
eling waves of the form expli(=kx — wit) + At], with
A=1-k* and w; = ak®. Indeed, the values of the
Lyapunov exponents in the isolated region behave like
this, and the vectors are composed of traveling waves
propagating at a velocity of *w/k. Compared to the KS
case, the additional multiplicity of two comes from the
degeneracy between k and —k modes. Moreover, this
degeneracy implies that these two modes are in fact mixed
up in a single vector: Isolated vectors are either in the pure
k mode [Fig. 3(a)], in the pure —k mode, or patches of the
two [Fig. 3(b)].

In spite of these differences, the isolated modes for CGL
remain dynamically isolated from any other mode.

Although »97* ) measured with small 7 is not zero in
the isolated region, a clear threshold is found when con-
sidering larger 7 values: Contrary to what happens for

Jj1, Jo = 86, all V(Tj"h) for j, = 87 show a decrease faster

than exponential, indicating the existence of a finite 7
beyond which Vs-jl'jz) is zero [Fig. 3(d)]. Consequently,
we can also define the isolated modes by their DOS as
for the KS equation and determine exactly the number of
physical modes (here at j = 86). Indeed, physical modes
have no tangencies with any isolated modes (j = 87).
Moreover, angle distributions involving isolated modes
show, like for the KS equation, the essential singularity
~ exp(—const/8) near tangency.

We now discuss our results. We first note that the thresh-
old separating physical from isolated modes does not co-
incide with the appearance of steps in the Lyapunov spec-
trum (for PBC). Lyapunov exponents alone can provide
only a good guess: For the KS and CGL systems treated
above, the first steps start, respectively, at j = 40 and j =
79, whereas the exact thresholds are at j = 41 and j = 86.
Indeed, a closer scrutiny of the exponents reveals that the
first steps are actually not perfect.

Let us now specify the implication of the lack of tan-
gencies for the isolated modes. Suppose that we add to the
dynamics an infinitesimal perturbation along the CLVs of
some isolated modes. Then this perturbation decays expo-
nentially to zero as indicated by their negative Lyapunov
exponents, and the absence of tangencies implies that this
does not induce any perturbation along directions spanned
by the other Lyapunov modes. In contrast, perturbations
along physical modes will propagate to other physical
modes through tangencies between them and could even-
tually induce activity in the modes associated with positive
exponents, growing to considerably affect phase space
dynamics even if the initial perturbation was made in the
direction associated with negative exponents. In this sense,
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FIG. 4 (color online). Extensivity of the Lyapunov spectrum
for the KS equation with PBC. Inset: Quantities indicating
effective dimensions of the system: number of non-negative
exponents (circles), Kaplan-Yorke dimension (squares), metric
entropy (diamonds, multiplied by 50), and number of physical
modes (triangles).

the dynamics corresponding to the physical modes is
highly entangled but completely decoupled from the de-
caying dynamics of the isolated modes. Therefore, all of
the degrees of freedom associated with physical modes
are necessary to faithfully describe phase space dynam-
ics, while adding further more degrees of freedom associ-
ated with isolated modes does not affect phase space
dynamics in any significant way. The number of physical
modes scales linearly with the system size L: Rescaled
Lyapunov spectra collapse both in the physical and in the
isolated region with the stepwise structure retained (Fig. 4).
In particular, the dimension density defined from the num-
ber of physical modes is larger than others, for instance,
being almost twice the Kaplan-Yorke dimension [12] (inset
of Fig. 4). It is therefore natural to interpret the number of
physical modes as an embedding dimension of the global
attractor. Furthermore, we speculate, pending mathemati-
cal rigor, that the number of physical modes could be
related to the dimension of the inertial manifold, which is
a positively invariant and exponentially attracting smooth
manifold embedding the global attractor (the subspace
spanned by the physical modes would then be the local
linear approximation of the inertial manifold [13]). While
this conjecture would drastically lower existing estimates
for the dimension of the KS inertial manifold D = const X
L*# [13], it is, however, in line with the extensivity of
chaos already observed in the past for the same models
[14,15].

Our results suggest that a faithful numerical integration
of PDEs needs to incorporate at least the degrees of free-
dom associated with all physical modes. Moreover, the
extensivity of the number of physical modes implies that
the minimal resolution evaluated in systems of moderate
size carries over to arbitrarily large system size L. Our
obtained number of effective degrees of freedom would
also be helpful to determine the minimal number of con-
straints necessary for a full control of a continuum system,
with applications to real situations such as, e.g., the sup-
pression of ventricular fibrillation.

In summary, we have shown, using Lyapunov analysis,
that the tangent space of two representative nonlinear
dissipative PDEs systems can be divided into two parts: a
finite-dimensional manifold spanned by strongly interact-
ing physical modes and the remaining set of isolated,
strongly damped modes. We demonstrated that isolated
modes are hyperbolically separated from all other modes
and thus satisfy the property of domination of the Oseledec
splitting. Similar results were obtained also for a chain of
diffusively coupled tent maps (not shown [11]). We have
interpreted the number of physical modes as an embedding
dimension of the global attractor. The extensivity of this
dimension could also be of interest in view of the studies by
Egolf and Greenside [15] arguing about the ‘‘building
blocks” of spatiotemporal chaos. We hope our results
will trigger work to clarify these issues at the mathematical
level, as much as numerical investigations of other dissi-
pative systems, like those yielding fully developed turbu-
lence, for which no rigorous proofs are known about the
existence of an inertial manifold. Besides their theoretical
importance, our results are also useful for the numerical
integration and control issues of dissipative PDEs.

[1] M.C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[2] For a review, see J. C. Robinson, Chaos 5, 330 (1995).

[3] Y. Lan and P. Cvitanovic, Phys. Rev. E 78, 026208 (2008).

[4] F. Ginelli et al., Phys. Rev. Lett. 99, 130601 (2007).

[5] H. Chaté and Y. Kuramoto, The Kuramoto-Sivashinsky
Equation (Scholarpedia, to be published).

[6] A spectral method with discrete Fourier or sine transform
up to a cutoff wave number k., is used in order to avoid
aliasing. Time is integrated using the operator-splitting
method with a time step of 0.005. Data are typically
recorded over a period of =10° after a transient of
~5 X 103 X kyy.

[7] C. Pugh, M. Shub, and A. Starkov, Bull. Am. Math. Soc.
41, 1 (2004); J. Bochi and M. Viana, Ann. Math. 161, 1423
(2005).

[8] H.L. Yang and G. Radons, Phys. Rev. Lett. 100, 024101
(2008).

[9] LI.S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99
(2002).

[10] B.I. Shraiman er al., Physica (Amsterdam) 57D, 241
(1992).

[11] K.A. Takeuchi et al. (to be published).

[12] J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617
(1985).

[13] J.C. Robinson, Phys. Lett. A 184, 190 (1994); M. S. Jolly,
R. Rosa, and R. Temam, Adv. Diff. Egs. 5, 31 (2000).

[14] P. Manneville, in Macroscopic Modelling of Turbulent
Flows, edited by U. Frisch et al., Lect. Notes Phys.
Vol. 230 (Springer-Verlag, Berlin, 1985), p. 319.

[15] D.A. Egolf and H.S. Greenside, Nature (London) 369,
129 (1994); M.P. Fishman and D.A. Egolf, Phys. Rev.
Lett. 96, 054103 (20006).

074102-4



