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We generalize modern ideas about the duality between Wilson loops and scattering amplitudes inN ¼
4 super Yang-Mills theory to large-N (or quenched) QCD. We show that the area-law behavior of

asymptotically large Wilson loops is dual to the Regge-Veneziano behavior of scattering amplitudes at

high energies and fixed momentum transfer, when the quark mass is small and/or the number of particles

is large. We elaborate on this duality for string theory in flat space, identifying the asymptotes of the disk

amplitude and the Wilson loop of large-N QCD.
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This Letter is inspired by a remarkable recent discovery
of the duality between Wilson loops and scattering ampli-
tudes in N ¼ 4 super Yang-Mills (SYM) theory (see [1]
for a review of this subject). SYM theory differs from QCD
by the contents of matter fields [6 scalars and 4 spinors in
the adjoint representation of the SUðNÞ color group,
thereby providing an extended N ¼ 4 supersymmetry]
and has attracted a significant interest over the last three
decades as a toy model for certain aspects of QCD, in
particular, for the relation between QCD and strings.
Adding the extra fields makes the dynamics of SYM theory
much simpler than that of QCD, and it enjoys the famous
anti–de Sitter-space/conformal-field-theory (AdS/CFT)
correspondence which, in particular, relates SYM Wilson
loops to an open superstring in AdS5 � S5 [2]. While
essential ingredients of QCD—asymptotic freedom and
quark confinement—are not present in N ¼ 4 SYM, it
captures many features of QCD perturbation theory.

The (finite part of the) 4-gluon on-shell scattering am-
plitude in SYM theory has the form

Aðs; tÞ ¼ Atreee
fð�Þlog2ðs=tÞ (1)

(where s and t are usual Mandelstam’s variables) as was
conjectured [3] on the basis of three-loop calculations. To
explain Eq. (1), the Wilson-loop–scattering-amplitude
(WL-SA) duality was introduced [4] at large ’t Hooft
couplings �, which has been then advocated in SYM
perturbation theory [5]. This duality states that the scatter-
ing amplitude (divided by the kinematical factor Atree)
equals the Wilson loop for a rectangle whose vertices xi
are related to the momenta pi of scattering gluons by

pi ¼ Kðxi � xi�1Þ; (2)

where K ¼ 1=2��0 is the string tension.
The function fð�Þ also appears in the anomalous dimen-

sions of cusped Wilson loops and operators of twist two. It
has been recently found as a solution to the equation [6]
derived from spin chains. Its perturbative solution repro-
duces the three [3,7] and four [8] loop SYM results, while

numerical [9] and analytical [10] solutions reproduce theffiffiffiffi
�

p
behavior of fð�Þ for large � originally found [11]

using the AdS/CFT correspondence. The next orders in

1=
ffiffiffiffi
�

p
also agree with the superstring calculations [12],

thereby providing a remarkable test of the AdS/CFT
correspondence.
Our goal in this Letter is to find out what features of the

described WL-SA duality (if any) remain valid for QCD
and, in particular, how it is possible to maintain the relation
of the type (2) which would relate large momenta in
scattering amplitudes with loops of large size. Of course
this is not possible in QCD perturbation theory, where
jpj � 1=jxj because of dimensional ground. But nonper-
turbatively a dimensional parameter K � ð400 MeVÞ2 ap-
pears in QCD, which shows up in the area-law behavior of
asymptotically large Wilson loops:

WðCÞ /large C e�KSminðCÞ; (3)

where SminðCÞ is the area of the minimal surface bounded
by C, which results in confinement. Strictly speaking, this
requires large N or the quenched approximation.
As is well-known by now, a string theory, which QCD is

supposedly equivalent to, is not the simplest Nambu-Goto
string. Some extra degrees of freedom living on the string
are required which are most probably conveniently de-
scribed by a presence of extra dimensions. The asymptotic
behavior (3) is nevertheless universal for large loops. Also,
there is a considerable amount of evidence from lattice
gauge calculations in 2þ 1 and 3þ 1 dimensions for
various N that the Nambu-Goto action describes the be-
havior of the Wilson loops quite well and the transition
from perturbative to stringy behavior takes place ‘‘at sur-
prisingly small distances’’ [13]. There also exists a number
of other comparisons between results from the Nambu-
Goto action, e.g., between the closed string spectra, and
SUðNÞ for variousN (see [14] and references therein). This
action has the well-known anomaly for d � 26, which
however is suppressed for long strings [15].
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This remarkable success of the Nambu-Goto string in
flat space as an effective action leads us to reconsider the
relation between the Wilson loop WðCÞ and the corre-
sponding string wave functional. We then obtain scattering
amplitudes in large-N (or quenched) QCD by properly
summingWðCÞ over paths and find that the WL-SA duality
holds in a kinematical region of large s and fixed t when
only large loops, for which the area law (3) sets in, are
essential in the sum over paths. Thus obtained scattering
amplitudes, quite involved in general, are of the Regge-
Veneziano type when the quark mass is small and/or the
number of external particles is large.

Our starting point is the standard representation of
Green’s functions of M colorless composite quark opera-
tors [e.g., �qðxiÞqðxiÞ] in terms of the sum over all Wilson
loops passing via the points xi (i ¼ 1; . . . ;M), where the
operators are inserted:

G �
�YM
i¼1

�qðxiÞqðxiÞ
�
conn

¼
Z 1

0
dT e�mT

Z T

0
d�M�1

YM�2

i¼1

Z �iþ1

0
d�i

�
Z

zð0Þ¼zðT Þ¼x0
zð�i Þ¼xi

Dzð�ÞJ½zð�Þ�W½zð�Þ�: (4)

Here the weight for the path integration is

J½zð�Þ� ¼
Z

Dkð�ÞspPei
R

T

0
d�½ _zð�Þ�kð�Þ��ð�Þ�kð�Þ�

(5)

for spinor quarks and scalar operators. In Eq. (4) WðCÞ is
the Wilson loop in pure Yang-Mills theory at large N (or
quenched), m is the quark mass, and � is the proper-time
variable. For finite N, correlators of several Wilson loops
have to be taken into account. The derivation of this
formula and the references can be found in [16].
The on-shell M-particle scattering amplitudes can be

obtained from the Green function (4) by the standard
Lehman-Symanzik-Zimmerman reduction. When making
the Fourier transformation, it is convenient to represent M
momenta of the (all incoming) particles by the differences
�pi ¼ pi�1 � pi. Then momentum conservation is auto-
matic while an (infinite) volume V is produced, say, by
integration over x0. It is convenient to introduce a
momentum-space loop p�ð�Þ which is piecewise constant:

pð�Þ ¼ pi for �i < � < �iþ1: (6)

Because the derivative _pð�Þ ¼ �P
i�pi�ð�� �iÞ with

�pi � pi�1 � pi, we write in the Fourier transformationP
i�pi � xi ¼

R
d�pð�Þ � _zð�Þ, which is manifestly para-

metric invariant.
Making the Fourier transformation, we obtain

Gð�p1; . . . ;�pMÞ¼
Z 1

0
dT e�mT

Z T

0
d�M�1

YM�2

i¼1

Z �iþ1

0
d�i

Z
zð0Þ¼zðT Þ¼0

Dzð�Þei
R

T

0
d� _zð�Þ�pð�ÞJ½zð�Þ�W½zð�Þ�; (7)

where pð�Þ is piecewise constant as in Eq. (6). We do not
integrate over zð0Þ ¼ zðT Þ, which would produce the (in-
finite) volume factor because of translational invariance.

To calculate the scattering amplitudes, we have to sub-
stitute the area-law behavior (3) of asymptotically large
Wilson loops into Eq. (7) and to integrate over the paths. In
general, this would lead us to very complicated integrals,
but the calculation drastically simplifies if we use the
representation of the minimal area as a boundary func-
tional that was introduced by Douglas [17] in his cele-
brated solution of the Plateau problem. We shall use one of
the equivalent forms of the Douglas functional:

A½�� ¼ � 1

4�

Z T

0
d�1d�2 _xð�1Þ � _xð�2Þ

� lnð1� cosf2�½�ð�1Þ � �ð�2Þ�=T gÞ; (8)

where 0<�ð�Þ<T is a reparametrization [�0ð�Þ 	 0].
The functional (8) is to be minimized with respect to �ð�Þ
with the minimizing function �
ð�Þ being, of course,
contour-dependent. Then A½�
� is equal to the minimal
area SminðCÞ, while in general A½�� 	 A½�
� ¼ SminðCÞ.

In fact (8) is well-known as the classical boundary action
in string theory. It appears for the tree-level disk amplitude
with Dirichlet boundary conditions in the Polyakov string
formulation after integrating over the string fluctuations

inside the disk, i.e., over Xðr; 	Þ with r < 1, 0 � 	 < 2�,
and fixing the value Xð1; 	Þ � xð	Þ at the boundary. The
appearance of the function �
ð	Þ is related to a subtlety
associated with fixing conformal gauge [18]. The decou-
pling of the Liouville field is possible only in the interior of
the disk, while its boundary value determines the function
�
ð	Þ at the classical level. The path integral over the
boundary value of the Liouville field then restores the
invariance under reparametrizations of the boundary in
quantum theory.
Motivated by this fact, Polyakov [19] proposed to iden-

tify the Wilson loop in large-N QCD with the tree-level
string disk amplitude integrated over reparametrizations of
the boundary contour. It is convenient to conformally map
the disk into the upper half-plane, so the disk boundary is
mapped into the real axis parametrized by tð�Þ ¼
tanð��=T Þ, �1< t <þ1. Then we write

WðCÞ ¼
Z

DsðtÞ exp
�
K

2�

Z þ1

�1
dt1dt2 _xðt1Þ � _xðt2Þ

� lnjsðt1Þ � sðt2Þj
�
; (9)

where the path integral over sðtÞ [with s0ðtÞ 	 0] restores
the invariance under reparametrizations.
In spite of the fact that the right-hand side of Eq. (9) is

derivable for a bosonic string in d ¼ 26 or superstring in
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d ¼ 10, we shall use it only for asymptotically large loops
or, equivalently, very large K, when the integral over
reparametrizations has a saddle point at sðtÞ ¼ s
ðtÞ. This
is crucial for reproducing Eq. (3).

It is easy to calculate a (reparametrization-invariant)
functional Fourier transformation

W½pð�Þ� ¼
Z

Dxei
R

p�dxW½xð�Þ� (10)

of the disk amplitude (9) for piecewise constant pðtÞ.
Substituting (9) into Eq. (10) and performing the
Gaussian integration, we get

W½pð�Þ� ¼
Z

DsðtÞ exp
�
�0 Z þ1

�1
dt1dt2 _pðt1Þ � _pðt2Þ lnjsðt1Þ � sðt2Þj

�
; (11)

which is of the same form as (9) only with K replaced by 1=K ¼ 2��0.
Since pðtÞ ¼ pj at the jth interval for the stepwise discretization, the only effect of the reparametrization is to change the

values of tj’s for sj’s, keeping their cyclic order. This is a discrete version of the reparametrization transformation. Note

that the stepwise discretization of xðtÞ itself is not possible since it would violate the continuity of the world line of the
string end.

The stepwise discretization (6) naturally results in the M-particle (off-shell) Koba-Nielsen amplitudes which are
invariant under the SLð2;RÞ projective transformation s ) ðasþ bÞ=ðcsþ dÞ with ad� bc ¼ 1 because the projective
group is a subgroup of reparametrization transformations. To derive them, we first note that

Z þ1

�1
dt1dt2 _pðt1Þ � _pðt2Þ lnjsðt1Þ � sðt2Þj ¼ � 1

2

Z þ1

�1
ds1ds2

ðs1 � s2Þ2
fp½tðs1Þ� � p½tðs2Þ�g2 (12)

for the integral in the exponent in (11). The integration over s1 or s2 on the right-hand side has divergences when s1 and s2
lie on adjacent sides k ¼ l� 1. If we omit the sides with k ¼ l� 1, then the integrations over s1 and s2 are perfectly finite,
resulting in

1

2

X
k�l�1

Z sk

sk�1

ds1
Z sl

sl�1

ds2
ðpk � plÞ2
ðs1 � s2Þ2

¼ X
k�l�1

�pk � �pl logjsk � slj þ
X
j

�p2
j log

ðsj � sj�1Þðsjþ1 � sjÞ
ðsjþ1 � sj�1Þ ; (13)

which is projective invariant.
Choosing the measure to be

D s ¼ Y
i

dsi
ðsiþ1 � si�1Þ

ðsi � si�1Þðsiþ1 � siÞ ; (14)

which is also invariant under the projective transformation,
we arrive at

Wð�p1; . . . ;�pMÞ¼
Z
sj�1<sj

Y
i

dsi
Y
k�l

jsk�slj�0�pk�pl

�Y
j

�ðsj�sj�1Þðsjþ1�sjÞ
ðsjþ1�sj�1Þ

�
�0�p2

j�1
;

(15)

where the integration over sj emerges from the path inte-

gral over reparametrizations in Eq. (11). This is known as
the Lovelace choice [20] (see [21]), which reproduces
some projective-invariant off-shell string amplitudes
known since the late 1960s. The more familiar on-shell
tachyon amplitudes can be obtained from Eq. (15) by
setting �0�p2

j ¼ 1.

Fixing in Eq. (15) the remaining SLð2;RÞ invariance in
the standard way, we obtain the scalar amplitudes in the

Koba-Nielsen variables. For the case of 4 scalars this
reproduces the Veneziano amplitude

Að�p1;�p2;�p3;�p4Þ ¼
Z 1

0
dxx��ðsÞ�1ð1� xÞ��ðtÞ�1;

(16)

where �ðsÞ ¼ �0sþ 1 and s ¼ �ð�p1 þ �p2Þ2, t ¼
�ð�p2 þ�p3Þ2 are usual Mandelstam’s variables (for
Euclidean metric). Here the tachyonic condition �0�p2

j ¼
1 has not to be imposed. While Eq. (15) results in �ð0Þ ¼
1, an arbitrary value of the intercept �ð0Þ can be reached by
properly changing the measure (14).
We are now in a position to perform the main task of this

Letter: to substitute the area-law behavior (3) ofWðCÞ into
the path integral (7) and to find out for what momenta the
asymptotically large loops dominate. As we shall see,
typical momenta will be large for large loops. As is already
explained, we substitute Eq. (9) for Eq. (3), which gives the
same for large loops (or large K ¼ 1=2��0).
Interchanging the order of integration over zð�Þ and�ð�Þ

[or sðtÞ] and easily doing a Gaussian path integral, we
obtain

Gð�p1; . . . ;�pMÞ¼
Z 1

0
dT e�mT

Z T

0
d�M�1

YM�2

i¼1

Z �iþ1

0
d�i

Z
D�ð�Þ

�
Z
Dkð�ÞspPe�0=2

R
T

0
d�1

R
T

0
d�2½ _kð�1Þþ _pð�1Þ��½ _kð�2Þþ _pð�2Þ�lnð1�cosfð2�Þ=ðT Þ½�ð�1Þ��ð�2Þ�gÞ�i

R
T

0
d��ð�Þ�kð�Þ: (17)
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This expression is rather close to the disk amplitude (11),
except for the additional integration over k. But for the case
where m is small (or M is very large), the integral over T
in Eq. (17) is dominated by T � ðM� 1Þ=m which is
large for m small. This is because

Q
M�1
i d�i �T M�1.

Noting that typical values of k� 1=T are essential in
the path integral over k for large T , we can disregard
kð�Þ in the exponent in Eq. (17) so the integral over k
factorizes. Making the change of the variables from � to s,
we finally obtain from Eq. (17) the product of the
momentum-space disk amplitude (11) times factors which
do not depend on p. Therefore, Eq. (17) exactly reproduces
for piecewise constant pð�Þ the (off-shell) Koba-Nielsen
amplitude (15) as m ! 0.

It still remains to discuss in what kinematical region of
momenta�pi our derivation is legible; that is, only asymp-
totically large loops are essential in the path integral over
zð�Þ in Eq. (7). A physical intuition suggests, from the
spectrum of a classical string, this should be the case at
least for asymptotically large s and large t & s. This indeed
agrees with our formulas, where the value of �ð0Þ is not
essential in this region. But the domain of applicability of
our approach is broader and extends to large negative
values of t. However, when�t  s becomes large enough,
there are no longer reasons to expect the contribution of
large loops to dominate over perturbation theory, which
comes from integration over small loops in Eq. (7).
Therefore, our formula for the 4-point scattering amplitude
is valid only for asymptotically large s and fixed t (jtj *
1=�0), associated with small angle or fixed momentum
transfer. The tachyon issue, which is a short distance
phenomenon [15], is then irrelevant. For smaller values
of jtj & 1=�0 the results become sensitive to the choice of
the measure in the ansatz (9).

As distinct from previous approaches to reggeization in
perturbative QCD, in particular, from that based on the
evolution equation [22] for Regge trajectories, our ap-
proach deals with large loops usually associated with non-
perturbative effects. Actually we are dealing with the
quark-antiquark Regge trajectory, whose QCD calculation
was pioneered in [23], rather than with the Pomeron.

When m is not small and/or M is not large, one should
consider the full expression (17). We can split there the k

integral into two domains with small and large _k. Then the
former will appear as a Regge-Veneziano behaved factor
coupled to the rest of the integrand.

Thus, in conclusion we see that the area-law behavior of
Wilson loops is dual to the Regge-Veneziano behavior of
scattering amplitudes at high energies and small angles,
when quark mass is small and/or the number of produced
particles is large, but this ceases to be valid when the
momentum transfer is large. This is how the exponential
falloff of the 4-particle amplitude with large�t� s, which
is unavoidable in string theory [24], does not happen in our
consideration.

We thank R. Marotta for pointing out that the amplitude
(15) is projective invariant.

[1] L. F. Alday and R. Roiban, Phys. Rep. 468, 153
(2008).

[2] J. Maldacena, Phys. Rev. Lett. 80, 4859 (1998); S.-J. Rey
and J. Yee, Eur. Phys. J. C 22, 379 (2001).

[3] Z. Bern, L. J. Dixon, and V.A. Smirnov, Phys. Rev. D 72,
085001 (2005).

[4] L. F. Alday and J. Maldacena, J. High Energy Phys. 06
(2007) 064.

[5] J.M. Drummond, G. P. Korchemsky, and E. Sokatchev,
Nucl. Phys. B795, 385 (2008); A. Brandhuber, P. Heslop,
and G. Travaglini, Nucl. Phys. B794, 231 (2008); J.M.
Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev,
Nucl. Phys. B795, 52 (2008).

[6] B. Eden and M. Staudacher, J. Stat. Mech. (2006) P11014;
N. Beisert, B. Eden, and M. Staudacher, J. Stat. Mech.
(2007) P01021.

[7] A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko, and V.N.
Velizhanin, Phys. Lett. B 595, 521 (2004).

[8] Z. Bern, M. Czakon, L. J. Dixon, D.A. Kosower, and V.A.
Smirnov, Phys. Rev. D 75, 085010 (2007); F. Cachazo,
M. Spradlin, and A. Volovich, Phys. Rev. D 75, 105011
(2007).

[9] M.K. Benna, S. Benvenuti, I. R. Klebanov, and A.
Scardicchio, Phys. Rev. Lett. 98, 131603 (2007).

[10] A. V. Kotikov and L.N. Lipatov, Nucl. Phys. B769, 217
(2007); B. Basso, G. P. Korchemsky, and J. Kotanski,
Phys. Rev. Lett. 100, 091601 (2008).

[11] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Nucl.
Phys. B636, 99 (2002).

[12] S. Frolov and A.A. Tseytlin, J. High Energy Phys. 06
(2002) 007; R. Roiban and A.A. Tseytlin, J. High
Energy Phys. 11 (2007) 016; Phys. Rev. D 77, 066006
(2008).
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