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We investigate the Brownian motion of hard-sphere colloids near a solid wall by Evanescent Wave

Dynamic Light Scattering (EWDLS). We carried out measurements for various volume fractions of

sterically stabilized poly(methyl methacrylate) (PMMA) particles over a range of scattering wave vectors,

q. While in the dilute regime, the near wall short-time diffusion is significantly slowed down due to

particle-wall hydrodynamic interactions (HI); as volume fraction increases, the wall effect is progressively

diminished at all q’s. We present a new analysis for the EWDLS short-time self- and collective

diffusivities applicable to all volume fractions and a simple model for the self-diffusion describing the

interplay between particle-wall and particle-particle HI. Moreover, a weaker decay of the near-wall self-

diffusion coefficient with volume fraction is predicted by Stokesian dynamics simulations.
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Interfaces are an important ingredient of soft matter and
biological systems [1]. Consequently, Brownian motion of
colloidal particles, polymer chains or proteins, near sur-
faces, is of central importance, determines their macro-
scopic properties and impacts their biological functions.
Such confined dynamics are affected by direct energetic
interactions as well as excluded volume and hydrodynamic
interactions. The latter affect diffusion and flow of particles
near a hard wall [2,3], between two surfaces [4] or in
microfluidic channels [5]. In biological systems, they
play an essential role in collective motion of sperm cells
near interfaces [6] and swimming bacteria in thin films [7].
Confined flows of colloidal suspensions are also ubiquitous
in industrial processes from food processing to petrol
recovery [8]. Thus, near-wall Brownian motion is of inter-
est both for fundamental mesoscopic physics and interface
science as well as for its high technological relevance such
as in microfluidics and optofluidics [9]. A key question is
how particle dynamics are affected by the existence of
nonpenetrable walls via hydrodynamic interactions (HIs).

Experimentally, optical microscopy [10] limited by par-
ticle size, and evanescent wave dynamic light scattering
(EWDLS) [2,11], combining dynamic light scattering
(DLS) with the short penetration depth of an evanescent
wave under total internal reflection conditions, have been
used to study near surface dynamics. The latter requires a
careful interpretation of the intensity time-autocorrelation
function. Currently, only its initial decay from dilute sus-
pensions is well described taking into account anisotropic
diffusion and the evanescent wave illumination [11].
EWDLS has been used to study dynamics of polymer
brushes, particles near a brush and rodlike polymers near
a wall [12]. With increasing volume fraction (�) particle-
particle HIs become important and modify the wall-

induced drag effect. Furthermore, liquid to solid transitions
in confinement are related with modified particle mobility
near a wall [13]. However, near-wall dynamics in concen-
trated suspensions are virtually unexplored both experi-
mentally and theoretically.
In this Letter, we employ dynamic light scattering in

bulk (3D) and near a hard wall (quazi-2D) to compare for
the first time the corresponding dynamics at a wide range
of volume fractions and further use a simple model to-
gether with Stokesian Dynamics Simulations to capture
the basic physics involved. We conducted EWDLS ex-
periments and conventional DLS (with a normal setup)
at several scattering wave vectors, q [¼ð4�n2=�0Þ�
sinð�s=2Þ], where n2 (¼1:497) is the suspension refractive
index, �0 (¼ 532 nm) the laser wavelength, and �s the
scattering angle. The evanescent wave was generated at
the interface of a semicylindrical prism of high refractive
index (n1 ¼ 1:627) with the suspending liquid confined in
an attached cell. At total internal reflection, the inverse

penetration depth is �=2 [ ¼ ð2�n1=�0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2�i � sin2�c

p
],

where �i is the incident angle and �c ( ¼ 67:9�) the
measured critical angle. The cell was placed at the center
of a �–2� goniometer enabling variation of both q (1<
qR< 7) and �=2 [1< 2=ð�RÞ< 6].
The suspensions were composed of sterically stabilized

(with a thin poly-12-hydrohystearic acid layer) poly
(methyl methacrylate) (PMMA) nearly hard-sphere parti-
cles with radius R ¼ 183 nm (and R ¼ 154 nm and
118 nm for the two higher �’s, determined by light scat-
tering) suspended in a refractive index matching tetralin/
cis-decalin (30%=70%) mixture to minimize multiple scat-
tering. We prepared several volume fractions by diluting a
concentrated batch. Its volume fraction was determined in
the coexistence regime [14] (for the 154 and 118 nm
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particles random close packing of 0.65 was used in-
stead due to polydispersity). We measured the normalized
intensity time-autocorrelation function (TCF)[14],

gð2Þðq; t;�Þ ¼ hIðq; t;�ÞIðq; 0;�Þi=hIðtÞi2, of the light scat-
tering intensity, Iðq; t;�Þ, at room temperature (T ¼
18 �C), under homodyne conditions in 3D and mixed
homodyne-heterodyne in EWDLS due to strong static
scattering from the prism surface. We calculated the nor-
malized field autocorrelation function, fðq; t;�Þ ¼
hEðq; t;�ÞE�ðq; 0;�Þi=hIi from gð2Þðq; t;�Þ, using the nor-
mal (3D) or modified (EWDLS) Siegert relation [11] and
further computed its initial decay rate [14], � ¼ � @

@t �
lnfðq; t;�Þ as t ! 0, to determine the q dependent short-
time diffusion coefficient, Dð�;q; �Þ ¼ �=q2.

In EWDLS, the incident beam intensity decays expo-
nentially with distance from the boundary and thus the
typical DLS averages [14,15] are modulated accordingly.
In this case, D2Dð�;q; �Þ ¼ �=ðk � k�Þ where k ¼
qþ e3i�=2 and e3 is a vector normal to the wall pointing
into the fluid. Thus, we have redefined the scattering vector
for an evanescent wave as the sum of the usual q and an
imaginary component that gives rise to the exponential
decay. Following typical DLS analysis, we can recover
the ‘‘evanescent’’ short-time collective and self-diffusivity.
For qR ! 0, we can show [16] that the decay of fðq; t;�Þ
measures the collective diffusivity as

D2D
C ð�;�Þ ¼ hD��

33 e
��z� þ ðN � 1ÞD��

33 e
�ð�=2Þðz�þz�Þi

he��z� þ ðN � 1Þe�ð�=2Þðz�þz�Þi
(1)

where, in an ensemble ofN particles,D��
33 (¼ kTM��

33 ) and

D��
33 (¼ kTM��

33 ) are products of the thermal energy with

the perpendicular to the wall self hydrodynamic mobility
of one particle and that of a pair of particles, respectively,
with z� and z� their distances from the wall. Hence, the

‘‘evanescent’’ collective diffusivity, D2D
C ð�;�Þ, probes dif-

fusion only perpendicular to the wall since motion parallel
to the wall is OðqRÞ while perpendicular is Oð1Þ.

In contrast, at large qR, the decay of fðq; t;�Þ measures
a weighted average of parallel and perpendicular ‘‘evanes-
cent’’ short-time self-diffusivities as

D2D
S ð�;�Þ ¼ h½q2kD��

11 þ ðq2? þ �2

4 ÞD��
33 �e��z�i

ðq2k þ q2? þ �2

4 Þhe��z�i (2)

where D��
11 ( ¼ kTM��

11 ) reflects the self hydrodynamic
mobility parallel to the wall. In particular, for �=2 � q
(holding here) and qk � q? (at �s � 90�), the short-time

decay of fðq; t;�Þ weighs equally the parallel and perpen-
dicular components, yielding D2D

S ð�;�Þ ¼ hðD��
11 þ

D��
33 Þe��z�i=2he��z�i. These results are similar (and re-

duce as � ! 0) to the cumulant expansion of Holmqvist
et al. [11], but apply not only in the dilute regime, but over
the entire range of �0 s.

We first present data for both DLS and EWDLS from
suspensions of increasing � to reveal the effect of particle
crowding on wall-induced HIs. Figure 1 shows fðq; t;�Þ at
qR ¼ 4:58 (qk � q?) for a dilute and a concentrated sus-

pension. For all EWDLS data, the penetration depth was
2=� ¼ 4:49R (�i ¼ 68:22�Þ. While in the dilute suspen-
sion the quazi-2D dynamics are clearly slower due to wall-
induced drag [2,17], in concentrated suspensions, the
quazi-2D and 3D dynamics are essentially the same, espe-
cially for short times. This reveals a qualitative modifica-
tion of the wall-induced HIs at high � as compared to the
dilute limit.
In Fig. 2, we show the q-dependent diffusivity deduced

from the short-time decay of fðq; t;�Þ in both 3D and
quazi-2D, normalized by the Stokes-Einstein-Sutherland
diffusivity, D0 ¼ kT=ð6��RÞ. At high �’s, the slowing of
the dynamics near the peak of the structure factor [14] is
evident both in quazi-2D and the 3D. To quantify the
influence of � on the dynamics, one should extract the
short-time collective- and self-diffusivity in the limits of
qR ! 0 and high qR’s [where SðqÞ ¼ 1], respectively.
While the former entails large errors, especially for near-
wall data, for the latter, we determine Dð�;q; �Þ at qR ¼
4:58 where the parallel and perpendicular diffusivities are
averaged in the ratio of one to one. In 3D, DðqR ¼ 4:58Þ,
which to a good approximation may be identified as the
self-diffusivity [18], agrees well with Stokesian dynamics
simulations with full HI [19] (Fig. 3) providing further
support for its self-diffusion character [20].
In Fig. 3, we also show the � dependence of the near-

wall self-diffusivity (again at qR ¼ 4:58). At � ! 0, we
recover a ratio of near-wall to bulk self-diffusivity of 0.68
(at 2=� ¼ 4:49R) in agreement with the anticipated near-
wall hydrodynamic slowing down [11,17]. In the same
figure, we show indicatively the 3D and near-wall collec-
tive diffusivities from linear fits at low q’s for few high�’s.
Both in 3D and quazi-2D, the collective dynamics become

FIG. 1 (color online). fðq; t;�Þ from DLS (3D) and EWDLS
(quazi-2D) at qR ¼ 4:58 (and 2=� ¼ 4:37R in the latter case)
for a dilute (� ¼ 0:0018) and a concentrated suspension (� ¼
0:25). The insets portray the initial decay of these functions.
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faster with increasing �, under the influence of osmotic
compressibility [decrease of Sðq ! 0Þ] while single parti-
cle dynamics become slower due to hydrodynamic inter-
actions [14]. However, above �� 0:35, the near-wall
dynamics at all q, below and above the peak of SðqÞ, are
virtually indistinguishable from those in 3D {see supple-
mentary material for DðQÞ vs q at high � [21]}. Conse-
quently, the decrease of self-diffusivity with � near the
wall is weaker than in 3D, whereas, although not accu-
rately determined, the opposite trend is suggested for the

collective diffusivity which increases with � stronger than
in 3D.
A simple model explains the physical origin of the

diminished effect of the wall at high �. The decrease in
the short-time self-diffusivity with � is caused by HIs
comprising of a far-field (�1=r) and a near-field (lubrica-
tion) contribution [19]. The particle-wall and particle-
particle near-field HI may be reasonably assumed the
same (they have the same singular behavior near contact).
Thus, at high concentrations and over short distances, a
particle does not feel if it is close to a wall or to a second
particle. We use this idea to calculate the ratio of 3D to
quazi-2D self-diffusivity. In 3D, we write the normalized
diffusivity as D3D

S ð�Þ ¼ ð�3D
ff þ �3D

lubÞ�1 and D3D
ff ð�Þ ¼

ð�3D
ff Þ�1, with ff and lub denoting the far- and near-

field HI, respectively, yielding �3D
lub ¼ 1=D3D

S ð�Þ �
1=D3D

ff ð�Þ ¼ �2D
lub. For a given penetration depth and for

a dense suspension, the near-wall self-diffusivity may be
written as D2D

S ð�;�Þ ¼ ð�2D
ff þ �3D

lubÞ�1. We further as-

sume that the far-field contribution to the near-wall self-
diffusivity has the same �-dependence as in 3D, and
thus D2D

ff ð�;�Þ ¼ D3D
ff ð�ÞðD2D

0 ð�Þ=D0Þ. The above yields

a ratio,

D3D
S ð�Þ

D2D
S ð�;�Þ ¼ 1þ

�
D3D

S ð�Þ
D3D

ff ð�Þ
��

D0

D2D
0 ð�Þ � 1

�
: (3)

The right-hand side of Eq. (3) is determined using the
experimental dilute limit D0=D

2D
0 ð�Þ and the ratio

D3D
S ð�Þ=D3D

ff ð�Þ taken from simulations [19]. As seen in

Fig. 4(a), the above equation predicts the observed merging
of 3D and quazi-2D dynamics with increasing � suggest-
ing that the proposed mechanism is broadly valid, although
the quantitative discrepancy at high �’s calls for detailed
calculations of many particle near-wall HIs that may en-
hance the phenomenon.
The � dependence of the quazi-2D self-diffusivity is

also very interesting. We have already observed a weaker
decay of the near-wall diffusivity compared to 3D (Fig. 3).
We further used Stokesian dynamics simulations [22] to
calculate the order � term in the virial expansion of
D2D

S ð�;�Þ. In 3D, Batchelor predicts [23] that D3D
S ð�Þ ¼

D0ð1–1:83�Þ. Near the wall, however, the coefficient de-
pends on the penetration depth so that

D2D
S ð�;�Þ ¼ D2D

0 ð�Þð1� �ð�Þ�Þ: (4)

�ð�Þ was calculated by averaging HIs over all possible
positions of a second particle around a first one (placed at
distance z from the wall). Then this average was integrated
over the height of the first particle above the wall weighted
exponentially, akin to the EWDLS ensemble average.
Figure 4(b) shows D2D

0 ð�Þ=D0 and �ð�Þ from simulations

together with the experimental values at 2=� ¼ 4:37R. The
results from simulations and experiments are in very good
agreement for D2D

0 ð�Þ=D0 while the experimental �ð�Þ is
clearly smaller than 1.83 as predicted by simulations for all

FIG. 3 (color online). The �-dependence of the short-time
collective, DC, and self, DS, diffusivity, in 3D and near the
wall normalized by the Stokes-Einstein-Sutherland diffusivity
D0. The errors in DC result from the extrapolation to q ¼ 0. The
last two points (squares) were measured with R ¼ 154 nm (� ¼
0:4) and 114 nm (� ¼ 0:42) particles. The solid lines correspond
to Batchelor’s dilute predictions for the collective and self-
diffusion [23] while the dashed line is the Stokesian dynamics
prediction for self-diffusion [19].

FIG. 2 (color online). Normalized q-dependent diffusivity as a
function of qR in 3D and quazi-2D for several ’0s. The arrow
denotes the qR where qk � q? (�s � 90�) and the lines denote

the theoretical predictions of Beenaker and Mazur [24] for
diffusion in 3D.
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values of �. This suggests that the wall screens out HIs
among many particles in the dilute limit, reminiscent of the
weaker decay of HIs near the wall 1=r2 versus 1=r in 3D.

Concluding, we have shown that hard-sphere particle
dynamics near a wall are significantly altered as � is
increased. The hydrodynamic drag that slows a particle
in the vicinity of the wall is progressively weakened at
high � due to a counterbalancing of the wall particle by
particle-particle HIs. The wall is then felt as another, larger
particle. While the convergence of near-wall and bulk
dynamics at high � is observed generically in both collec-
tive and self-diffusion, we have provided a simple model to
describe the behavior of the short-time self-diffusion co-
efficient and further calculate the order � contribution to a
virial expansion of D2D

S ð�;�Þ from Stokesian dynamics

simulations. The latter is found to be smaller than
Batchelor’s prediction in 3D due to the screened HIs
between particle pairs adjacent to a wall. Moreover, ex-
perimental data suggest that near-wall collective diffusiv-
ity exhibits a stronger growth with� than in 3D. The study
of the near-wall HIs on the collective diffusivity, the
�-dependence of the parallel and perpendicular diffusiv-
ities, as well as an understanding of the long-time, near-
wall dynamics will be the subjects of future work.
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FIG. 4 (color online). (a) The ratio of 3D to the near-wall self-
diffusivity as a function of volume fraction. The last two points
were measured with R ¼ 154 nm and R ¼ 118 nm particles.
The line corresponds to the simple model prediction [Eq. (3)].
(b) Dilute limit quazi-2D short-time self-diffusion and order �
coefficient from Stokesian dynamics simulations. The stars
represent experimental data, and the arrow corresponds to
Batchelor’s order � prediction [23] in 3D (i.e., 1.83).

PRL 102, 068302 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 FEBRUARY 2009

068302-4


