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Robust oscillations have recently been observed in a synthetic gene network composed of coupled

positive and negative feedback loops. Here we use deterministic and stochastic modeling to investigate

how a small time delay in such regulatory networks can lead to strongly nonlinear oscillations that can be

characterized by ‘‘degrade-and-fire’’ dynamics. We show that the period of the oscillations can be

significantly greater than the delay time, provided the circuit components possess strong activation and

tight repression. The variability of the period is strongly influenced by fluctuations near the oscillatory

minima, when the number of regulatory molecules is small.
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Recently, we constructed a synthetic two-gene oscillator
which exhibited highly robust and tunable oscillations [1].
The design of the oscillator was motivated by the original
theoretical proposal [2] in which oscillations were due to
the interplay of positive feedback (PFB) and negative feed-
back (NFB) loops operating at different time scales. How-
ever, experimental results suggested that the core of the
oscillator was a single multistage NFB circuit (Fig. 1),
while the PFB loop helped to increase the robustness and
tunability of oscillations. In that study [1] we also devel-
oped a detailed biochemical model of this circuit, which
explicitly incorporated multiple steps leading from gene
transcription to formation of mature protein multimers and
protein-DNA interactions. Such models are useful for
making testable predictions; however, they are not trans-
parent enough to permit an analytical investigation that
provides qualitative insights into the mechanisms control-
ling the circuit dynamics. In particular, it was not clear how
relatively small (3–5 min) delays caused by the intermedi-
ate steps in protein synthesis can lead to rather long-period
(20–60 min) oscillations. In this Letter, we replace the
feedback cascade (Fig. 1) by a single reaction with a fixed
deterministic delay time. It is well known that delayed
autorepression can lead to oscillatory gene expression
[3–8]. Here we demonstrate analytically that in a strongly
nonlinear regime this system exhibits what we term
degrade-and-fire (DF) oscillations, in analogy with
integrate-and-fire models [9]. An essential feature of this
regime is that the period of oscillations can be arbitrarily
long compared to the delay time. In this regime, we are
able to derive analytic estimates for the mean period and its
variance. While the results are mostly presented for the
NFB-only case, we also address the role of an additional
PFB loop, which was present in the experimental realiza-
tion of the oscillator [1] (details in supplementary infor-
mation [10]).

NFB-only system.—We consider a system with only two
reactions: production of a repressor protein and its degra-

dation. These reactions are characterized by the rates Krþ
and Kr� to produce or degrade repressor, respectively. The
production rate is negatively regulated by the repressor
itself, and this reaction is assumed to take a finite time �
from the start to completion of a mature repressor protein,
KrþðtÞ ¼ Fðr�ðtÞÞ, where rðtÞ is the number of repressor
molecules at time t, r�ðtÞ � rðt� �Þ, FðrÞ � �C2

0=ðC0 þ
rÞ2 is a Hill function governing NFB [11]. Repressor is
degraded enzymatically at a maximum rate �r, and we also
assume a small first-order degradation due to dilution with
rate �, Kr�ðtÞ¼�rrðtÞ½R0þrðtÞ��1þ�rðtÞ, with R0 char-
acterizing the repressor number that saturates the protease.
We simulated these two stochastic reactions using the

extension of the Gillespie algorithm [12] proposed in [7] to
treat delayed reactions. For sufficiently large � * �r �
C0=� > R0=� [13] the system exhibits strongly nonlinear
degrade-and-fire oscillations in which the number of pro-
tein molecules rises rapidly from zero, and then slowly
decays back to zero, after which the process repeats.
Figure 2(a) shows a typical trajectory rðtÞ.
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FIG. 1 (color online). An autorepressor genetic oscillator de-
scribed in Ref. [1]. Transcriptional activity of the gene is
regulated by the concentration of the repressor protein through
several sequential kinetic steps. In this work, these steps are
replaced by an explicitly delayed production of the repressor.
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DF oscillations consist of two main phases. Each oscil-
lation begins with a ‘‘production’’ phase. During this phase
the existing repressor concentration is too small to pre-
clude transcription and nascent repressor is produced (to
become active a time � later). The second phase primarily
consists of the degradation of functional repressor. For the
majority of the degradation phase, production is tightly
repressed, and transcription begins only when the level of
the repressor falls near the threshold value C0. The onset of
the production phase can be associated with time ton at
which r ¼ ron [Fig. 2(b)]. However, due to production
delay, new repressor molecules appear en masse at time
ton þ �. Once the repressor level significantly exceeds C0

again, production of new repressor ceases, and the concen-
tration of repressor reaches a maximum within a time �
later, after which a new decay phase commences, and so
on. Because of the stochasticity of the biochemical re-
actions, the amplitudes of individual pulses vary, but their
shapes are similar.

Deterministic analysis.—The mass-action kinetics of
delayed production and degradation can be expressed by
a delay-differential equation

_rðtÞ ¼ �C2
0

ðC0 þ r�Þ2
� �rrðtÞ

R0 þ rðtÞ � �rðtÞ: (1)

This equation describes a sequence of nearly triangular
pulses of repressor similar to that of Fig. 2(a), however
with a constant amplitude and duration. The key to analyti-
cally solving Eq. (1) is to recognize that, in this strongly
nonlinear regime of large-amplitude pulses, the production
of repressor is negligibly small during most of the degra-
dation phase. We assume R0 ! 0 and� ¼ 0, in which case
the decay becomes a zeroth-order reaction. While this
assumption is not essential, it greatly simplifies the sub-
sequent analysis. Note that in this approximation we have
to augment the corresponding simplified model by the
natural condition rðtÞ � 0. In this case the solution during
the degradation phase is linear in time,

rðtÞ � ��rðt� t0Þ; t < t0: (2)

Here t0 is the time at which r first reaches zero [see

Fig. 2(b)]. This law for linear decay is independent of the
amplitude of the previous pulse. Thus, individual pulses
are decoupled from each other.
The structure of the pulse at t > t0 can be reconstructed

iteratively based on the knowledge of the decay phase
solution (2) at t < t0. In the integral form

rðtÞ � rðtiÞ ¼
Z t��

ti��
dt0

�

ð1þ rðt0Þ
C0
Þ2 � �rðt� tiÞ (3)

for some times t, ti. Equation (3) advances the repressor
trajectory in intervals of time duration �, except when
rðtÞ ¼ 0, which should be treated separately. With this
expression, we can first determine the trajectory for ton þ
� < t < ton þ 2� using ti ¼ ton þ � and then in a similar
manner compute the trajectory at ton þ 2� < t < ton þ 3�.
During this second iteration, the solution reaches a maxi-
mum at which rðtÞ is sufficiently large to neglect the
production term, and the new degradation phase commen-
ces. Thus, only two iterations of Eq. (3) are needed to
determine the magnitude P for a pulse of repressor.
The degradation of a burst of repressor takes an approxi-

mate time TD ¼ P=�r and is typically the dominant con-
tribution to the oscillation period. A simple estimate for P
is the production P0 that occurs during t0 < t < ton þ �
when rðtÞ ¼ 0, i.e., when the production rate is maximal,

P0 � ð�� �rÞ
�
�� C0

�r

� ffiffiffiffiffi
�

�r

s
� 1

��
: (4)

As seen from this expression, the period of oscillations can
be arbitrarily large compared with the delay time �, de-
pending on the production and decay rates of the protein.
This estimate for the period has a maximum at a certain �r

and becomes zero when �r ! �, ron=�. A more accurate
period estimate can be obtained using the integral expres-
sion (3) [10]. Figures 3(a) and 3(c) compare both these
estimates to the results of stochastic simulations and direct
integration of Eq. (1).
The case of nonzero but small � (�� � 1) can also be

analyzed. Production bursts of repressor are only slightly
perturbed in this case. However, if the number of produced
proteins P � �r=�, the initial degradation of the burst is
exponential rather than linear, and so the time TDð�Þ to
degrade repressor to zero can be significantly less than for
� ¼ 0. It is easy to show that �TDð�Þ � lnð1þ �TDð0ÞÞ,
where TDð0Þ � P=�r. Thus, the period of oscillations in
growing cells cannot be much larger than the dilution time
��1. On the other hand, the �-correction is small for
�TDð0Þ � 1.
Stochastic analysis.—Stochastic DF oscillations can be

approximated by a rapid burst of repressor with random
magnitude P that is subsequently degraded through a
zeroth-order reaction with rate �r (again, we assume � ¼
0 and R0 ! 0). The random time for degradation to zero of
P repressor molecules satisfies a gamma distribution.
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FIG. 2. (a) DF oscillations in the stochastic NFB-only system,
with parameters � ¼ 300, �r ¼ 80, C0 ¼ 10, � ¼ 1, � ¼ 0:1,
R0 ¼ 1. (b) A magnified view of the deterministic trajectory near
the production phase in the limit � ¼ 0, R0 ! 0.
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Allowing the time to complete a burst of repressor (mag-
nitude P) to be sharply defined (e.g., 3�þ ton � t0), the
period variance can be shown to consist of two parts [10]

h�T2i ¼ h�P2i
�2
r

þ hPi
�2
r

; (5)

where hPi and h�P2i denote mean and variance of the burst
amplitude. The first term in Eq. (5) is due to production
variability and the second term is due to stochasticity of the
degradation process.

Analogous to the deterministic case, the statistics of the
burst amplitude can be found by integrating birth and death
events for rðtÞ from time ton þ � to some later time, e.g.
ton þ 3�, assuming that the statistics of trajectories for
earlier times are known. Assuming that the probability of
r ¼ 0 for t > ton þ � is small, the equations for the evolu-
tion of the mean repressor concentration hrðtÞi and the
correlation �ðrðt2Þ; rðt1ÞÞ read

hrðtÞi � hrðtiÞi ¼
Z t

ti

dt0hvðr�ðt0ÞÞi; (6)

�ðrðt2Þ; rðt1ÞÞ� �ðrðtiÞ; rðtiÞÞ ¼
Z t1

ti

dt0hBðr�ðt0ÞÞi þ
Z t2

ti

dt02
Z t1

ti

dt01�½vðr�ðt02ÞÞ; vðr�ðt01ÞÞ�

þ
Z t1

ti

dt0�½rðtiÞ; vðr�ðt0ÞÞ� þ
Z t2

ti

dt0�½rðtiÞ; vðr�ðt0ÞÞ� (7)

with ti þ � � t2 � t1 � ti, vðrÞ ¼ FðrÞ � �r, BðrÞ ¼
FðrÞ þ �r, and �ðx1; x2Þ � hx1x2i � hx1ihx2i [10]. The
right-hand side of Eq. (7) comprises two parts. The integral
over Bðr�Þ is a diffusive contribution to correlations due to
uncorrelated production and degradation events [14,15].
The remaining terms reflect variability due to the amplifi-
cation of the randomness in past repressor trajectories in
the course of new repressor synthesis.

For very small ron, the production rate is effectively
binary: it is zero when r� > 0 and � when r� ¼ 0. In this
case the amplified variability is negligible, and the diffu-
sive fluctuations are dominant. It is easy to see in this case
that P obeys Poisson statistics (assuming �þ �r � �),
i.e., h�P2i � hPi, such that h�T2i � 2hPi=�2

r . This
Poisson-like period variability becomes relatively small
for large P and is independent of the details of how the
pulse of repressor rises. However, for finite ron, the ampli-
fied history fluctuations can lead to a significant period
variability even when P is very large. In fact, simulations
show that in many cases the variability is much larger than
the Poisson contribution [see Figs. 3(b) and 3(d)].
Equations (6) and (7) can be solved perturbatively by

writing rðtÞ ¼ hrðtÞi þ �rðtÞ, with �rðtÞ being a small sto-
chastic correction with zero mean. This approximation is
used to investigate oscillations in the limit �r� � ron [16].
After substituting Taylor expansions of vðrÞ and BðrÞ in
Eqs. (6) and (7), we can compute correlation functions and
variances sequentially based on the knowledge of correla-
tion functions and variances at earlier times [10]. These
analytical results are compared to numerical results in
Figs. 3(b) and 3(d). At sufficiently large �r, the theory
agrees well with numerics. At large �r, the main contribu-
tion to the period variability is provided by the Poisson-like
fluctuations. However, for moderate and small �r (or for
large �), the main contribution to period variability is
provided by amplified history fluctuations. Note that the
period variance has a maximum near the value of �r where
repressor first fails to consistently reach zero.
Coupled positive-negative feedback oscillator.—The ge-

netic oscillator built in [1] featured two coupled feedback
loops, one negative and another positive. The two proteins
are encoded by two genes which are under the control of
identical hybrid promoters. These promoters are activated
by one of the proteins (activator) and repressed by the other
(repressor). It was demonstrated experimentally that the
dual-feedback loop design provided enhanced robustness

FIG. 3 (color online). (a) Stochastic mean period (diamonds),
deterministic period (dash-dot line), and two analytic approx-
imations, T0 ¼ 2�þ P0=�r [Eq. (4), dashed line] and an
analytic estimate based on Eq. (2) (solid line), vs �r for the
NFB-only system with � ¼ 10 000, � ¼ 1, C0 ¼ 50, � ¼ 0.
(b) Coefficient of variation (diamonds), the Poisson-like contri-
bution (dashed line), and more accurate analytic prediction (solid
line). (c) Mean period vs � with �r ¼ 800, for � ¼ 0, 0.1, 0.2 as
diamonds, circles, and crosses, respectively. (d) C.V. as a func-
tion of � for the same three values of � as above. Analytic
approximations as in (a) and (b) are also shown in (c) and (d),
respectively. Each symbol represents the average over 1000
samples.
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and tunability of oscillations as compared with a NFB-only
design. To address this issue theoretically, we extend our
delayed model system to include two additional reactions
of production and degradation of activator a. Following
the experiment, we assume that transcription of r and a
genes is controlled by identical promoters, but the delay in
producing mature activator proteins �a is different from �,
so repressor and activator production rates are, respec-
tively, Krþ ¼ Fðr�; a�Þ, Kaþ ¼ �Fðr�a ; a�aÞ with Fðr; aÞ �
�ðf�1 þ a=C1Þ=½ð1þ a=C1Þð1þ r=C0Þ2�. Here � is the
ratio of the production rates for activator and repressor,
and f is the relative activation strength (f ¼ 1 corresponds
to the NFB-only circuit). Repressor and activator degrada-
tion occur independently with zero-order rates �r and �a,
respectively. In the deterministic limit, the dual feedback
system is described by a pair of delay-differential equa-
tions [10].

The inclusion of the PFB does not drastically alter the
basic staging of phases in NFB oscillations. PFB with high
f and low �a can produce robust and large-amplitude
oscillations that maintain a relatively low coefficient of
variation (C.V.), i.e., with C.V. similar to the NFB-only
case with basal rate �=f. These qualities of additional PFB
are most pronounced when the original NFB-only system
generates weak, low amplitude oscillations with repressor
not reaching zero. Oscillation amplitude and period de-
crease as the activator delay becomes comparable to re-
pressor delay, since late-arriving activator allows repressor
to be produced at the low basal rate �=f during most of the
production phase [10].

Closing remarks.—Synthetic gene circuits designed
around a core delayed NFB circuit offer a promising
strategy for generating robust genetic oscillations. Here
we have presented an analysis of a simple model for such
oscillators. A NFB-only system with a strong tightly re-
pressible promoter and slow degradation can produce
degrade-and-fire oscillations with a period much larger
than the delay time and with relatively small period vari-
ability. The main source of oscillation variability is the
short protein production phase when the number of re-
pressor molecules is low. An additional fast PFB loop in
this model was found to be able to increase the mean period
and maintain low C.V. compared to an analogous NFB-
only system. It should be noted that while other coupled
positive and negative feedback biological oscillator models
[2,17] rely on a separation of time scales between the two
components to create relaxation oscillations, here the
mechanism is based on the presence of delay in the nega-
tive feedback loop and can function even in the absence of
PFB. Note that a different mechanism of long-period os-
cillations in cell dynamics have been recently investigated
in [8].

We believe that the results presented here are also rele-
vant for many naturally occurring gene oscillators, such as
circadian clocks and the Hes1 system [18–20]. While they
are generally made up of many interdependent genes and
proteins, one can often identify a core NFB loop similar to
Fig. 1.
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